Loading…
Resistance Exercise Training Attenuates the Loss of Endogenous GLP-1 Receptor in the Hypothalamus of Type 2 Diabetic Rats
The aim of this study was to investigate the effects of resistance exercise training on hypothalamic GLP-1R levels and its related signaling mechanisms in T2DM. The animals were separated into three groups: a non-diabetic control (CON), diabetic control (DM), and diabetic with resistance exercise (D...
Saved in:
Published in: | International journal of environmental research and public health 2019-03, Vol.16 (5), p.830 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study was to investigate the effects of resistance exercise training on hypothalamic GLP-1R levels and its related signaling mechanisms in T2DM. The animals were separated into three groups: a non-diabetic control (CON), diabetic control (DM), and diabetic with resistance exercise (DM + EXE) group. The resistance exercise training group performed ladder climbing (eight repetitions, three days per week for 12 weeks). Body weight was slightly lower in the DM + EXE group than the DM group, but difference between the groups was not significant. Food intake and glucose were significantly lower in the DM + EXE group than in the DM group. The blood insulin concentration was significantly higher and glucagon was significantly lower in the DM + EXE group. The DM + EXE group in the hypothalamus showed significant increases in GLP-1R mRNA, protein kinase A (PKA), glucose transporter 2 (GLUT2), and protein kinase B (AKT) and significant decrease in protein kinase C-iota (PKC-iota). Antioxidant enzymes and apoptosis factors were significantly improved in the DM + EXE group compared with the DM group in the hypothalamus. The results suggest that resistance exercise contributes to improvements the overall health of the brain in diabetic conditions. |
---|---|
ISSN: | 1660-4601 1661-7827 1660-4601 |
DOI: | 10.3390/ijerph16050830 |