Loading…
Role of the acquisition of a type 3 secretion system in the emergence of novel pathogenic strains of Xanthomonas
Summary Cases of emergence of novel plant‐pathogenic strains are regularly reported that reduce the yields of crops and trees. However, the molecular mechanisms underlying such emergence are still poorly understood. The acquisition by environmental non‐pathogenic strains of novel virulence genes by...
Saved in:
Published in: | Molecular plant pathology 2019-01, Vol.20 (1), p.33-50 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4777-c3e6766f03f930daaad136f13fd5c2d167aefa5ec01e49ae922632b39927d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4777-c3e6766f03f930daaad136f13fd5c2d167aefa5ec01e49ae922632b39927d3 |
container_end_page | 50 |
container_issue | 1 |
container_start_page | 33 |
container_title | Molecular plant pathology |
container_volume | 20 |
creator | Meline, Valérian Delage, Wesley Brin, Chrystelle Li‐Marchetti, Camille Sochard, Daniel Arlat, Matthieu Rousseau, Céline Darrasse, Armelle Briand, Martial Lebreton, Guillaume Portier, Perrine Fischer‐Le Saux, Marion Durand, Karine Jacques, Marie‐Agnès Belin, Etienne Boureau, Tristan |
description | Summary
Cases of emergence of novel plant‐pathogenic strains are regularly reported that reduce the yields of crops and trees. However, the molecular mechanisms underlying such emergence are still poorly understood. The acquisition by environmental non‐pathogenic strains of novel virulence genes by horizontal gene transfer has been suggested as a driver for the emergence of novel pathogenic strains. In this study, we tested such an hypothesis by transferring a plasmid encoding the type 3 secretion system (T3SS) and four associated type 3 secreted proteins (T3SPs) to the non‐pathogenic strains of Xanthomonas CFBP 7698 and CFBP 7700, which lack genes encoding T3SS and any previously known T3SPs. The resulting strains were phenotyped on Nicotiana benthamiana using chlorophyll fluorescence imaging and image analysis. Wild‐type, non‐pathogenic strains induced a hypersensitive response (HR)‐like necrosis, whereas strains complemented with T3SS and T3SPs suppressed this response. Such suppression depends on a functional T3SS. Amongst the T3SPs encoded on the plasmid, Hpa2, Hpa1 and, to a lesser extent, XopF1 collectively participate in suppression. Monitoring of the population sizes in planta showed that the sole acquisition of a functional T3SS by non‐pathogenic strains impairs growth inside leaf tissues. These results provide functional evidence that the acquisition via horizontal gene transfer of a T3SS and four T3SPs by environmental non‐pathogenic strains is not sufficient to make strains pathogenic. In the absence of a canonical effector, the sole acquisition of a T3SS seems to be counter‐selective, and further acquisition of type 3 effectors is probably needed to allow the emergence of novel pathogenic strains. |
doi_str_mv | 10.1111/mpp.12737 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6430459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157630128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4777-c3e6766f03f930daaad136f13fd5c2d167aefa5ec01e49ae922632b39927d3</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMoPqoL_0HAlYu2ecwknY0golaoWIoLdyHN3LGRmWRMppX-e9NWFAWzyeXcc7_kchA6p2RA0xk2bTugTHK5h44pF1mfS8L3U52lWkjGjtBJjG-EUFmw_BAdcUKkkJIfo3bma8C-wt0CsDbvSxttZ73bSBp36xYwxxFMgK0a17GDBlu39UMD4RWc2QKcX0GNW90tfNKswbEL2rq46b1ol-TGOx1P0UGl6whnX3cPze5un2_G_cnT_cPN9aRvMill33AQUoiK8KrgpNRal2mzivKqzA0rqZAaKp2DIRSyQkPBmOBszouCyZL30NUO2i7nDZQGXPpLrdpgGx3WymurfnecXahXv1Ii4yTLiwS43AEWf8bG1xO10QjLKRmNihVN3ouvx4J_X0Ls1JtfBpeWU4zmUnBC2eiHaIKPMUD1jaVEbVJUKUW1TTF5hzvvh61h_b9RPU6nu4lPPJSeTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157630128</pqid></control><display><type>article</type><title>Role of the acquisition of a type 3 secretion system in the emergence of novel pathogenic strains of Xanthomonas</title><source>Wiley Open Access</source><creator>Meline, Valérian ; Delage, Wesley ; Brin, Chrystelle ; Li‐Marchetti, Camille ; Sochard, Daniel ; Arlat, Matthieu ; Rousseau, Céline ; Darrasse, Armelle ; Briand, Martial ; Lebreton, Guillaume ; Portier, Perrine ; Fischer‐Le Saux, Marion ; Durand, Karine ; Jacques, Marie‐Agnès ; Belin, Etienne ; Boureau, Tristan</creator><creatorcontrib>Meline, Valérian ; Delage, Wesley ; Brin, Chrystelle ; Li‐Marchetti, Camille ; Sochard, Daniel ; Arlat, Matthieu ; Rousseau, Céline ; Darrasse, Armelle ; Briand, Martial ; Lebreton, Guillaume ; Portier, Perrine ; Fischer‐Le Saux, Marion ; Durand, Karine ; Jacques, Marie‐Agnès ; Belin, Etienne ; Boureau, Tristan</creatorcontrib><description>Summary
Cases of emergence of novel plant‐pathogenic strains are regularly reported that reduce the yields of crops and trees. However, the molecular mechanisms underlying such emergence are still poorly understood. The acquisition by environmental non‐pathogenic strains of novel virulence genes by horizontal gene transfer has been suggested as a driver for the emergence of novel pathogenic strains. In this study, we tested such an hypothesis by transferring a plasmid encoding the type 3 secretion system (T3SS) and four associated type 3 secreted proteins (T3SPs) to the non‐pathogenic strains of Xanthomonas CFBP 7698 and CFBP 7700, which lack genes encoding T3SS and any previously known T3SPs. The resulting strains were phenotyped on Nicotiana benthamiana using chlorophyll fluorescence imaging and image analysis. Wild‐type, non‐pathogenic strains induced a hypersensitive response (HR)‐like necrosis, whereas strains complemented with T3SS and T3SPs suppressed this response. Such suppression depends on a functional T3SS. Amongst the T3SPs encoded on the plasmid, Hpa2, Hpa1 and, to a lesser extent, XopF1 collectively participate in suppression. Monitoring of the population sizes in planta showed that the sole acquisition of a functional T3SS by non‐pathogenic strains impairs growth inside leaf tissues. These results provide functional evidence that the acquisition via horizontal gene transfer of a T3SS and four T3SPs by environmental non‐pathogenic strains is not sufficient to make strains pathogenic. In the absence of a canonical effector, the sole acquisition of a T3SS seems to be counter‐selective, and further acquisition of type 3 effectors is probably needed to allow the emergence of novel pathogenic strains.</description><identifier>ISSN: 1464-6722</identifier><identifier>EISSN: 1364-3703</identifier><identifier>DOI: 10.1111/mpp.12737</identifier><identifier>PMID: 30076773</identifier><language>eng</language><publisher>Oxford: John Wiley & Sons, Inc</publisher><subject>Chlorophyll ; Chlorophyll Fluorescence Imaging ; Crop yield ; Emergence ; Fluorescence ; Gene transfer ; Genes ; Hypersensitive response ; Image analysis ; Image processing ; Life Sciences ; Molecular modelling ; Necrosis ; non-pathogenic strains ; Original ; Plant tissues ; Proteins ; Secretion ; type 3 secretion system ; Virulence ; Xanthomonas</subject><ispartof>Molecular plant pathology, 2019-01, Vol.20 (1), p.33-50</ispartof><rights>2018 BSPP and John Wiley & Sons Ltd</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4777-c3e6766f03f930daaad136f13fd5c2d167aefa5ec01e49ae922632b39927d3</citedby><cites>FETCH-LOGICAL-c4777-c3e6766f03f930daaad136f13fd5c2d167aefa5ec01e49ae922632b39927d3</cites><orcidid>0000-0003-1404-8630 ; 0000-0001-6196-4856 ; 0000-0002-9334-5862 ; 0000-0003-4308-506X ; 0000-0002-5822-2824 ; 0000-0003-1033-6731 ; 0000-0002-9567-9444 ; 0000-0002-1442-917X ; 0000-0001-5088-0227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2157630128/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2157630128?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,44590,46052,46476,53791,53793,75126</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12737$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://univ-angers.hal.science/hal-02510889$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Meline, Valérian</creatorcontrib><creatorcontrib>Delage, Wesley</creatorcontrib><creatorcontrib>Brin, Chrystelle</creatorcontrib><creatorcontrib>Li‐Marchetti, Camille</creatorcontrib><creatorcontrib>Sochard, Daniel</creatorcontrib><creatorcontrib>Arlat, Matthieu</creatorcontrib><creatorcontrib>Rousseau, Céline</creatorcontrib><creatorcontrib>Darrasse, Armelle</creatorcontrib><creatorcontrib>Briand, Martial</creatorcontrib><creatorcontrib>Lebreton, Guillaume</creatorcontrib><creatorcontrib>Portier, Perrine</creatorcontrib><creatorcontrib>Fischer‐Le Saux, Marion</creatorcontrib><creatorcontrib>Durand, Karine</creatorcontrib><creatorcontrib>Jacques, Marie‐Agnès</creatorcontrib><creatorcontrib>Belin, Etienne</creatorcontrib><creatorcontrib>Boureau, Tristan</creatorcontrib><title>Role of the acquisition of a type 3 secretion system in the emergence of novel pathogenic strains of Xanthomonas</title><title>Molecular plant pathology</title><description>Summary
Cases of emergence of novel plant‐pathogenic strains are regularly reported that reduce the yields of crops and trees. However, the molecular mechanisms underlying such emergence are still poorly understood. The acquisition by environmental non‐pathogenic strains of novel virulence genes by horizontal gene transfer has been suggested as a driver for the emergence of novel pathogenic strains. In this study, we tested such an hypothesis by transferring a plasmid encoding the type 3 secretion system (T3SS) and four associated type 3 secreted proteins (T3SPs) to the non‐pathogenic strains of Xanthomonas CFBP 7698 and CFBP 7700, which lack genes encoding T3SS and any previously known T3SPs. The resulting strains were phenotyped on Nicotiana benthamiana using chlorophyll fluorescence imaging and image analysis. Wild‐type, non‐pathogenic strains induced a hypersensitive response (HR)‐like necrosis, whereas strains complemented with T3SS and T3SPs suppressed this response. Such suppression depends on a functional T3SS. Amongst the T3SPs encoded on the plasmid, Hpa2, Hpa1 and, to a lesser extent, XopF1 collectively participate in suppression. Monitoring of the population sizes in planta showed that the sole acquisition of a functional T3SS by non‐pathogenic strains impairs growth inside leaf tissues. These results provide functional evidence that the acquisition via horizontal gene transfer of a T3SS and four T3SPs by environmental non‐pathogenic strains is not sufficient to make strains pathogenic. In the absence of a canonical effector, the sole acquisition of a T3SS seems to be counter‐selective, and further acquisition of type 3 effectors is probably needed to allow the emergence of novel pathogenic strains.</description><subject>Chlorophyll</subject><subject>Chlorophyll Fluorescence Imaging</subject><subject>Crop yield</subject><subject>Emergence</subject><subject>Fluorescence</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Hypersensitive response</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Life Sciences</subject><subject>Molecular modelling</subject><subject>Necrosis</subject><subject>non-pathogenic strains</subject><subject>Original</subject><subject>Plant tissues</subject><subject>Proteins</subject><subject>Secretion</subject><subject>type 3 secretion system</subject><subject>Virulence</subject><subject>Xanthomonas</subject><issn>1464-6722</issn><issn>1364-3703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kUtLAzEUhYMoPqoL_0HAlYu2ecwknY0golaoWIoLdyHN3LGRmWRMppX-e9NWFAWzyeXcc7_kchA6p2RA0xk2bTugTHK5h44pF1mfS8L3U52lWkjGjtBJjG-EUFmw_BAdcUKkkJIfo3bma8C-wt0CsDbvSxttZ73bSBp36xYwxxFMgK0a17GDBlu39UMD4RWc2QKcX0GNW90tfNKswbEL2rq46b1ol-TGOx1P0UGl6whnX3cPze5un2_G_cnT_cPN9aRvMill33AQUoiK8KrgpNRal2mzivKqzA0rqZAaKp2DIRSyQkPBmOBszouCyZL30NUO2i7nDZQGXPpLrdpgGx3WymurfnecXahXv1Ii4yTLiwS43AEWf8bG1xO10QjLKRmNihVN3ouvx4J_X0Ls1JtfBpeWU4zmUnBC2eiHaIKPMUD1jaVEbVJUKUW1TTF5hzvvh61h_b9RPU6nu4lPPJSeTw</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Meline, Valérian</creator><creator>Delage, Wesley</creator><creator>Brin, Chrystelle</creator><creator>Li‐Marchetti, Camille</creator><creator>Sochard, Daniel</creator><creator>Arlat, Matthieu</creator><creator>Rousseau, Céline</creator><creator>Darrasse, Armelle</creator><creator>Briand, Martial</creator><creator>Lebreton, Guillaume</creator><creator>Portier, Perrine</creator><creator>Fischer‐Le Saux, Marion</creator><creator>Durand, Karine</creator><creator>Jacques, Marie‐Agnès</creator><creator>Belin, Etienne</creator><creator>Boureau, Tristan</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1404-8630</orcidid><orcidid>https://orcid.org/0000-0001-6196-4856</orcidid><orcidid>https://orcid.org/0000-0002-9334-5862</orcidid><orcidid>https://orcid.org/0000-0003-4308-506X</orcidid><orcidid>https://orcid.org/0000-0002-5822-2824</orcidid><orcidid>https://orcid.org/0000-0003-1033-6731</orcidid><orcidid>https://orcid.org/0000-0002-9567-9444</orcidid><orcidid>https://orcid.org/0000-0002-1442-917X</orcidid><orcidid>https://orcid.org/0000-0001-5088-0227</orcidid></search><sort><creationdate>201901</creationdate><title>Role of the acquisition of a type 3 secretion system in the emergence of novel pathogenic strains of Xanthomonas</title><author>Meline, Valérian ; Delage, Wesley ; Brin, Chrystelle ; Li‐Marchetti, Camille ; Sochard, Daniel ; Arlat, Matthieu ; Rousseau, Céline ; Darrasse, Armelle ; Briand, Martial ; Lebreton, Guillaume ; Portier, Perrine ; Fischer‐Le Saux, Marion ; Durand, Karine ; Jacques, Marie‐Agnès ; Belin, Etienne ; Boureau, Tristan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4777-c3e6766f03f930daaad136f13fd5c2d167aefa5ec01e49ae922632b39927d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chlorophyll</topic><topic>Chlorophyll Fluorescence Imaging</topic><topic>Crop yield</topic><topic>Emergence</topic><topic>Fluorescence</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Hypersensitive response</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Life Sciences</topic><topic>Molecular modelling</topic><topic>Necrosis</topic><topic>non-pathogenic strains</topic><topic>Original</topic><topic>Plant tissues</topic><topic>Proteins</topic><topic>Secretion</topic><topic>type 3 secretion system</topic><topic>Virulence</topic><topic>Xanthomonas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meline, Valérian</creatorcontrib><creatorcontrib>Delage, Wesley</creatorcontrib><creatorcontrib>Brin, Chrystelle</creatorcontrib><creatorcontrib>Li‐Marchetti, Camille</creatorcontrib><creatorcontrib>Sochard, Daniel</creatorcontrib><creatorcontrib>Arlat, Matthieu</creatorcontrib><creatorcontrib>Rousseau, Céline</creatorcontrib><creatorcontrib>Darrasse, Armelle</creatorcontrib><creatorcontrib>Briand, Martial</creatorcontrib><creatorcontrib>Lebreton, Guillaume</creatorcontrib><creatorcontrib>Portier, Perrine</creatorcontrib><creatorcontrib>Fischer‐Le Saux, Marion</creatorcontrib><creatorcontrib>Durand, Karine</creatorcontrib><creatorcontrib>Jacques, Marie‐Agnès</creatorcontrib><creatorcontrib>Belin, Etienne</creatorcontrib><creatorcontrib>Boureau, Tristan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meline, Valérian</au><au>Delage, Wesley</au><au>Brin, Chrystelle</au><au>Li‐Marchetti, Camille</au><au>Sochard, Daniel</au><au>Arlat, Matthieu</au><au>Rousseau, Céline</au><au>Darrasse, Armelle</au><au>Briand, Martial</au><au>Lebreton, Guillaume</au><au>Portier, Perrine</au><au>Fischer‐Le Saux, Marion</au><au>Durand, Karine</au><au>Jacques, Marie‐Agnès</au><au>Belin, Etienne</au><au>Boureau, Tristan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the acquisition of a type 3 secretion system in the emergence of novel pathogenic strains of Xanthomonas</atitle><jtitle>Molecular plant pathology</jtitle><date>2019-01</date><risdate>2019</risdate><volume>20</volume><issue>1</issue><spage>33</spage><epage>50</epage><pages>33-50</pages><issn>1464-6722</issn><eissn>1364-3703</eissn><abstract>Summary
Cases of emergence of novel plant‐pathogenic strains are regularly reported that reduce the yields of crops and trees. However, the molecular mechanisms underlying such emergence are still poorly understood. The acquisition by environmental non‐pathogenic strains of novel virulence genes by horizontal gene transfer has been suggested as a driver for the emergence of novel pathogenic strains. In this study, we tested such an hypothesis by transferring a plasmid encoding the type 3 secretion system (T3SS) and four associated type 3 secreted proteins (T3SPs) to the non‐pathogenic strains of Xanthomonas CFBP 7698 and CFBP 7700, which lack genes encoding T3SS and any previously known T3SPs. The resulting strains were phenotyped on Nicotiana benthamiana using chlorophyll fluorescence imaging and image analysis. Wild‐type, non‐pathogenic strains induced a hypersensitive response (HR)‐like necrosis, whereas strains complemented with T3SS and T3SPs suppressed this response. Such suppression depends on a functional T3SS. Amongst the T3SPs encoded on the plasmid, Hpa2, Hpa1 and, to a lesser extent, XopF1 collectively participate in suppression. Monitoring of the population sizes in planta showed that the sole acquisition of a functional T3SS by non‐pathogenic strains impairs growth inside leaf tissues. These results provide functional evidence that the acquisition via horizontal gene transfer of a T3SS and four T3SPs by environmental non‐pathogenic strains is not sufficient to make strains pathogenic. In the absence of a canonical effector, the sole acquisition of a T3SS seems to be counter‐selective, and further acquisition of type 3 effectors is probably needed to allow the emergence of novel pathogenic strains.</abstract><cop>Oxford</cop><pub>John Wiley & Sons, Inc</pub><pmid>30076773</pmid><doi>10.1111/mpp.12737</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1404-8630</orcidid><orcidid>https://orcid.org/0000-0001-6196-4856</orcidid><orcidid>https://orcid.org/0000-0002-9334-5862</orcidid><orcidid>https://orcid.org/0000-0003-4308-506X</orcidid><orcidid>https://orcid.org/0000-0002-5822-2824</orcidid><orcidid>https://orcid.org/0000-0003-1033-6731</orcidid><orcidid>https://orcid.org/0000-0002-9567-9444</orcidid><orcidid>https://orcid.org/0000-0002-1442-917X</orcidid><orcidid>https://orcid.org/0000-0001-5088-0227</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1464-6722 |
ispartof | Molecular plant pathology, 2019-01, Vol.20 (1), p.33-50 |
issn | 1464-6722 1364-3703 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6430459 |
source | Wiley Open Access |
subjects | Chlorophyll Chlorophyll Fluorescence Imaging Crop yield Emergence Fluorescence Gene transfer Genes Hypersensitive response Image analysis Image processing Life Sciences Molecular modelling Necrosis non-pathogenic strains Original Plant tissues Proteins Secretion type 3 secretion system Virulence Xanthomonas |
title | Role of the acquisition of a type 3 secretion system in the emergence of novel pathogenic strains of Xanthomonas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20acquisition%20of%20a%20type%203%20secretion%20system%20in%20the%20emergence%20of%20novel%20pathogenic%20strains%20of%20Xanthomonas&rft.jtitle=Molecular%20plant%20pathology&rft.au=Meline,%20Val%C3%A9rian&rft.date=2019-01&rft.volume=20&rft.issue=1&rft.spage=33&rft.epage=50&rft.pages=33-50&rft.issn=1464-6722&rft.eissn=1364-3703&rft_id=info:doi/10.1111/mpp.12737&rft_dat=%3Cproquest_24P%3E2157630128%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4777-c3e6766f03f930daaad136f13fd5c2d167aefa5ec01e49ae922632b39927d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157630128&rft_id=info:pmid/30076773&rfr_iscdi=true |