Loading…

Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation

Euphyllia paradivisa is a strictly mesophotic coral in the reefs of Eilat that displays a striking color polymorphism, attributed to fluorescent proteins (FPs). FPs, which are used as visual markers in biomedical research, have been suggested to serve as photoprotectors or as facilitators of photosy...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-03, Vol.9 (1), p.5245-5245, Article 5245
Main Authors: Ben-Zvi, Or, Eyal, Gal, Loya, Yossi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Euphyllia paradivisa is a strictly mesophotic coral in the reefs of Eilat that displays a striking color polymorphism, attributed to fluorescent proteins (FPs). FPs, which are used as visual markers in biomedical research, have been suggested to serve as photoprotectors or as facilitators of photosynthesis in corals due to their ability to transform light. Solar radiation that penetrates the sea includes, among others, both vital photosynthetic active radiation (PAR) and ultra-violet radiation (UVR). Both types, at high intensities, are known to have negative effects on corals, ranging from cellular damage to changes in community structure. In the present study, fluorescence morphs of E . paradivisa were used to investigate UVR response in a mesophotic organism and to examine the phenomenon of fluorescence polymorphism. E . paradivisa , although able to survive in high-light environments, displayed several physiological and behavioral responses that indicated severe light and UVR stress. We suggest that high PAR and UVR are potential drivers behind the absence of this coral from shallow reefs. Moreover, we found no significant differences between the different fluorescence morphs’ responses and no evidence of either photoprotection or photosynthesis enhancement. We therefore suggest that FPs in mesophotic corals might have a different biological role than that previously hypothesized for shallow corals.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-41710-3