Loading…
Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis
Overexpression of the human epidermal growth factor receptor 2 (HER2) is the cause of HER2-positive breast cancer (BC). Although HER2-inactivating therapies have benefited BC patients, development of resistance and disease recurrence have been the major clinical problems, pointing to a need for alte...
Saved in:
Published in: | Oncogene 2019-03, Vol.38 (13), p.2275-2290 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c603t-344fe85aecf433ffd760fe268a5f77f3d4618475ed55525e8f3d8ae959f88383 |
---|---|
cites | cdi_FETCH-LOGICAL-c603t-344fe85aecf433ffd760fe268a5f77f3d4618475ed55525e8f3d8ae959f88383 |
container_end_page | 2290 |
container_issue | 13 |
container_start_page | 2275 |
container_title | Oncogene |
container_volume | 38 |
creator | Zhao, Hua Martin, Elisha Matalkah, Fatimah Shah, Neal Ivanov, Alexey Ruppert, J. Michael Lockman, Paul R. Agazie, Yehenew M. |
description | Overexpression of the human epidermal growth factor receptor 2 (HER2) is the cause of HER2-positive breast cancer (BC). Although HER2-inactivating therapies have benefited BC patients, development of resistance and disease recurrence have been the major clinical problems, pointing to a need for alternative therapeutic strategies. For that to happen, proteins that play critical roles in the biology of HER2-induced tumorigenesis have to be identified and characterized. Here, we show that the Src homology phosphotyrosyl phosphatase 2 (Shp2) encoded by the
Ptpn11
gene is a requisite for ErbB2-induced tumorigenesis. We report that conditional knockout of
Shp2
alleles in the
ErbB2
BC model mice abrogates mammary tumorigenesis by blocking the expression of the
ErbB2
transgene. We also show that inhibition of SHP2 encoded by the
PTPN11
gene in the HER2-amplified BC cells induces a normal-like cellular phenotype and suppresses tumorigenesis and metastasis by blocking HER2 overexpression. These findings demonstrate that ErbB2-induced tumors in mice or xenograft tumors induced by transplantation of HER2-amplified BC cells are vulnerable to SHP2 inhibition since it abrogates the expression of the very oncogene that causes of the disease. This report paves the way for developing SHP2-targeting therapies for BC treatment in the future. |
doi_str_mv | 10.1038/s41388-018-0574-8 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6440805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580511650</galeid><sourcerecordid>A580511650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-344fe85aecf433ffd760fe268a5f77f3d4618475ed55525e8f3d8ae959f88383</originalsourceid><addsrcrecordid>eNp1UtuK1DAYDqK44-oDeCMBr7vm2KY3wjqMjrCg6N6HNP0zm902GZNW9Fl8WdOdPYISQiDfIfl-PoReU3JCCVfvsqBcqYrQsmUjKvUEraho6krKVjxFK9JKUrWMsyP0IudLQkjTEvYcHXEi6oY3aoX-rGPo_eRjMAO-CtFexXnC0eHv268M-4A3qfvA8JRMyDsI3uLRW8AxFezCd9fKhbbdfGOVGfeDdx563CUwecLWBAsJWxgGPPgAGXdDeSLjGGwsdoDh1z5BzouLCT2e5jEmvyDZ55fomTNDhlc35zE6_7g5X2-rsy-fPq9PzypbEz5VXAgHShqwTnDuXN_UxAGrlZGuaRzvRU2VaCT0UkomQZUrZaCVrVOKK36M3h9s93M3Qm8hlLSD3ic_mvRbR-P1YyT4C72LP3UtBFFEFoO3NwYp_pghT_oyzqkMNGtG25aVuUtyz9qZAbQPLhYzO_ps9aksNpTW16yTf7DK6qEMPgZwvtw_EtCDwKaYcwJ393FK9NISfWiJLi3RS0v0kvjNw8R3ittaFAI7EHKBwg7SfaL_u_4Fdq3JfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199200050</pqid></control><display><type>article</type><title>Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis</title><source>Nexis UK</source><source>Springer Nature</source><creator>Zhao, Hua ; Martin, Elisha ; Matalkah, Fatimah ; Shah, Neal ; Ivanov, Alexey ; Ruppert, J. Michael ; Lockman, Paul R. ; Agazie, Yehenew M.</creator><creatorcontrib>Zhao, Hua ; Martin, Elisha ; Matalkah, Fatimah ; Shah, Neal ; Ivanov, Alexey ; Ruppert, J. Michael ; Lockman, Paul R. ; Agazie, Yehenew M.</creatorcontrib><description>Overexpression of the human epidermal growth factor receptor 2 (HER2) is the cause of HER2-positive breast cancer (BC). Although HER2-inactivating therapies have benefited BC patients, development of resistance and disease recurrence have been the major clinical problems, pointing to a need for alternative therapeutic strategies. For that to happen, proteins that play critical roles in the biology of HER2-induced tumorigenesis have to be identified and characterized. Here, we show that the Src homology phosphotyrosyl phosphatase 2 (Shp2) encoded by the
Ptpn11
gene is a requisite for ErbB2-induced tumorigenesis. We report that conditional knockout of
Shp2
alleles in the
ErbB2
BC model mice abrogates mammary tumorigenesis by blocking the expression of the
ErbB2
transgene. We also show that inhibition of SHP2 encoded by the
PTPN11
gene in the HER2-amplified BC cells induces a normal-like cellular phenotype and suppresses tumorigenesis and metastasis by blocking HER2 overexpression. These findings demonstrate that ErbB2-induced tumors in mice or xenograft tumors induced by transplantation of HER2-amplified BC cells are vulnerable to SHP2 inhibition since it abrogates the expression of the very oncogene that causes of the disease. This report paves the way for developing SHP2-targeting therapies for BC treatment in the future.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-018-0574-8</identifier><identifier>PMID: 30467378</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/106 ; 42/100 ; 45/41 ; 631/67/1347 ; 64/60 ; 692/53/2421 ; 96/31 ; 96/95 ; Alleles ; Animals ; Antineoplastic Agents - therapeutic use ; Apoptosis ; Breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; Cancer genetics ; Cancer metastasis ; Carcinogenesis ; Carcinogenesis - drug effects ; Carcinogenesis - genetics ; Cell Biology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cell Proliferation - genetics ; Disease resistance ; Epidermal growth factor ; Epidermal growth factor receptors ; Epidermal growth factors ; ErbB-2 protein ; Female ; Gene Amplification - drug effects ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Knockout Techniques ; Genes ; Genetic aspects ; Genetic engineering ; Homology ; Human Genetics ; Humans ; Internal Medicine ; Medical schools ; Medicine ; Medicine & Public Health ; Metastases ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mice, Transgenic ; Oncogenes ; Oncogenes - drug effects ; Oncogenes - genetics ; Oncology ; Phenotypes ; Phosphatases ; Phosphotyrosyl phosphatase ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics ; Proteins ; Receptor, ErbB-2 - genetics ; Recurrence (Disease) ; Rodents ; Surgery ; Transgenic mice ; Transplantation ; Tumor cell lines ; Tumorigenesis ; Tumors ; Xenografts</subject><ispartof>Oncogene, 2019-03, Vol.38 (13), p.2275-2290</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-344fe85aecf433ffd760fe268a5f77f3d4618475ed55525e8f3d8ae959f88383</citedby><cites>FETCH-LOGICAL-c603t-344fe85aecf433ffd760fe268a5f77f3d4618475ed55525e8f3d8ae959f88383</cites><orcidid>0000-0001-6004-6527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30467378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Hua</creatorcontrib><creatorcontrib>Martin, Elisha</creatorcontrib><creatorcontrib>Matalkah, Fatimah</creatorcontrib><creatorcontrib>Shah, Neal</creatorcontrib><creatorcontrib>Ivanov, Alexey</creatorcontrib><creatorcontrib>Ruppert, J. Michael</creatorcontrib><creatorcontrib>Lockman, Paul R.</creatorcontrib><creatorcontrib>Agazie, Yehenew M.</creatorcontrib><title>Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Overexpression of the human epidermal growth factor receptor 2 (HER2) is the cause of HER2-positive breast cancer (BC). Although HER2-inactivating therapies have benefited BC patients, development of resistance and disease recurrence have been the major clinical problems, pointing to a need for alternative therapeutic strategies. For that to happen, proteins that play critical roles in the biology of HER2-induced tumorigenesis have to be identified and characterized. Here, we show that the Src homology phosphotyrosyl phosphatase 2 (Shp2) encoded by the
Ptpn11
gene is a requisite for ErbB2-induced tumorigenesis. We report that conditional knockout of
Shp2
alleles in the
ErbB2
BC model mice abrogates mammary tumorigenesis by blocking the expression of the
ErbB2
transgene. We also show that inhibition of SHP2 encoded by the
PTPN11
gene in the HER2-amplified BC cells induces a normal-like cellular phenotype and suppresses tumorigenesis and metastasis by blocking HER2 overexpression. These findings demonstrate that ErbB2-induced tumors in mice or xenograft tumors induced by transplantation of HER2-amplified BC cells are vulnerable to SHP2 inhibition since it abrogates the expression of the very oncogene that causes of the disease. This report paves the way for developing SHP2-targeting therapies for BC treatment in the future.</description><subject>13/100</subject><subject>13/106</subject><subject>42/100</subject><subject>45/41</subject><subject>631/67/1347</subject><subject>64/60</subject><subject>692/53/2421</subject><subject>96/31</subject><subject>96/95</subject><subject>Alleles</subject><subject>Animals</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer genetics</subject><subject>Cancer metastasis</subject><subject>Carcinogenesis</subject><subject>Carcinogenesis - drug effects</subject><subject>Carcinogenesis - genetics</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Proliferation - genetics</subject><subject>Disease resistance</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factor receptors</subject><subject>Epidermal growth factors</subject><subject>ErbB-2 protein</subject><subject>Female</subject><subject>Gene Amplification - drug effects</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Knockout Techniques</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Homology</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metastases</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Mice, Transgenic</subject><subject>Oncogenes</subject><subject>Oncogenes - drug effects</subject><subject>Oncogenes - genetics</subject><subject>Oncology</subject><subject>Phenotypes</subject><subject>Phosphatases</subject><subject>Phosphotyrosyl phosphatase</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics</subject><subject>Proteins</subject><subject>Receptor, ErbB-2 - genetics</subject><subject>Recurrence (Disease)</subject><subject>Rodents</subject><subject>Surgery</subject><subject>Transgenic mice</subject><subject>Transplantation</subject><subject>Tumor cell lines</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UtuK1DAYDqK44-oDeCMBr7vm2KY3wjqMjrCg6N6HNP0zm902GZNW9Fl8WdOdPYISQiDfIfl-PoReU3JCCVfvsqBcqYrQsmUjKvUEraho6krKVjxFK9JKUrWMsyP0IudLQkjTEvYcHXEi6oY3aoX-rGPo_eRjMAO-CtFexXnC0eHv268M-4A3qfvA8JRMyDsI3uLRW8AxFezCd9fKhbbdfGOVGfeDdx563CUwecLWBAsJWxgGPPgAGXdDeSLjGGwsdoDh1z5BzouLCT2e5jEmvyDZ55fomTNDhlc35zE6_7g5X2-rsy-fPq9PzypbEz5VXAgHShqwTnDuXN_UxAGrlZGuaRzvRU2VaCT0UkomQZUrZaCVrVOKK36M3h9s93M3Qm8hlLSD3ic_mvRbR-P1YyT4C72LP3UtBFFEFoO3NwYp_pghT_oyzqkMNGtG25aVuUtyz9qZAbQPLhYzO_ps9aksNpTW16yTf7DK6qEMPgZwvtw_EtCDwKaYcwJ393FK9NISfWiJLi3RS0v0kvjNw8R3ittaFAI7EHKBwg7SfaL_u_4Fdq3JfQ</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Zhao, Hua</creator><creator>Martin, Elisha</creator><creator>Matalkah, Fatimah</creator><creator>Shah, Neal</creator><creator>Ivanov, Alexey</creator><creator>Ruppert, J. Michael</creator><creator>Lockman, Paul R.</creator><creator>Agazie, Yehenew M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6004-6527</orcidid></search><sort><creationdate>201903</creationdate><title>Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis</title><author>Zhao, Hua ; Martin, Elisha ; Matalkah, Fatimah ; Shah, Neal ; Ivanov, Alexey ; Ruppert, J. Michael ; Lockman, Paul R. ; Agazie, Yehenew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-344fe85aecf433ffd760fe268a5f77f3d4618475ed55525e8f3d8ae959f88383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/100</topic><topic>13/106</topic><topic>42/100</topic><topic>45/41</topic><topic>631/67/1347</topic><topic>64/60</topic><topic>692/53/2421</topic><topic>96/31</topic><topic>96/95</topic><topic>Alleles</topic><topic>Animals</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer genetics</topic><topic>Cancer metastasis</topic><topic>Carcinogenesis</topic><topic>Carcinogenesis - drug effects</topic><topic>Carcinogenesis - genetics</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Proliferation - genetics</topic><topic>Disease resistance</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factor receptors</topic><topic>Epidermal growth factors</topic><topic>ErbB-2 protein</topic><topic>Female</topic><topic>Gene Amplification - drug effects</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Knockout Techniques</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Homology</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metastases</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Mice, Transgenic</topic><topic>Oncogenes</topic><topic>Oncogenes - drug effects</topic><topic>Oncogenes - genetics</topic><topic>Oncology</topic><topic>Phenotypes</topic><topic>Phosphatases</topic><topic>Phosphotyrosyl phosphatase</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics</topic><topic>Proteins</topic><topic>Receptor, ErbB-2 - genetics</topic><topic>Recurrence (Disease)</topic><topic>Rodents</topic><topic>Surgery</topic><topic>Transgenic mice</topic><topic>Transplantation</topic><topic>Tumor cell lines</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hua</creatorcontrib><creatorcontrib>Martin, Elisha</creatorcontrib><creatorcontrib>Matalkah, Fatimah</creatorcontrib><creatorcontrib>Shah, Neal</creatorcontrib><creatorcontrib>Ivanov, Alexey</creatorcontrib><creatorcontrib>Ruppert, J. Michael</creatorcontrib><creatorcontrib>Lockman, Paul R.</creatorcontrib><creatorcontrib>Agazie, Yehenew M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Proquest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hua</au><au>Martin, Elisha</au><au>Matalkah, Fatimah</au><au>Shah, Neal</au><au>Ivanov, Alexey</au><au>Ruppert, J. Michael</au><au>Lockman, Paul R.</au><au>Agazie, Yehenew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2019-03</date><risdate>2019</risdate><volume>38</volume><issue>13</issue><spage>2275</spage><epage>2290</epage><pages>2275-2290</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Overexpression of the human epidermal growth factor receptor 2 (HER2) is the cause of HER2-positive breast cancer (BC). Although HER2-inactivating therapies have benefited BC patients, development of resistance and disease recurrence have been the major clinical problems, pointing to a need for alternative therapeutic strategies. For that to happen, proteins that play critical roles in the biology of HER2-induced tumorigenesis have to be identified and characterized. Here, we show that the Src homology phosphotyrosyl phosphatase 2 (Shp2) encoded by the
Ptpn11
gene is a requisite for ErbB2-induced tumorigenesis. We report that conditional knockout of
Shp2
alleles in the
ErbB2
BC model mice abrogates mammary tumorigenesis by blocking the expression of the
ErbB2
transgene. We also show that inhibition of SHP2 encoded by the
PTPN11
gene in the HER2-amplified BC cells induces a normal-like cellular phenotype and suppresses tumorigenesis and metastasis by blocking HER2 overexpression. These findings demonstrate that ErbB2-induced tumors in mice or xenograft tumors induced by transplantation of HER2-amplified BC cells are vulnerable to SHP2 inhibition since it abrogates the expression of the very oncogene that causes of the disease. This report paves the way for developing SHP2-targeting therapies for BC treatment in the future.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30467378</pmid><doi>10.1038/s41388-018-0574-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6004-6527</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2019-03, Vol.38 (13), p.2275-2290 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6440805 |
source | Nexis UK; Springer Nature |
subjects | 13/100 13/106 42/100 45/41 631/67/1347 64/60 692/53/2421 96/31 96/95 Alleles Animals Antineoplastic Agents - therapeutic use Apoptosis Breast cancer Breast Neoplasms - drug therapy Breast Neoplasms - genetics Breast Neoplasms - pathology Cancer genetics Cancer metastasis Carcinogenesis Carcinogenesis - drug effects Carcinogenesis - genetics Cell Biology Cell Line, Tumor Cell Proliferation - drug effects Cell Proliferation - genetics Disease resistance Epidermal growth factor Epidermal growth factor receptors Epidermal growth factors ErbB-2 protein Female Gene Amplification - drug effects Gene Expression Regulation, Neoplastic - drug effects Gene Knockout Techniques Genes Genetic aspects Genetic engineering Homology Human Genetics Humans Internal Medicine Medical schools Medicine Medicine & Public Health Metastases Mice Mice, Inbred NOD Mice, SCID Mice, Transgenic Oncogenes Oncogenes - drug effects Oncogenes - genetics Oncology Phenotypes Phosphatases Phosphotyrosyl phosphatase Protein Tyrosine Phosphatase, Non-Receptor Type 11 - antagonists & inhibitors Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics Proteins Receptor, ErbB-2 - genetics Recurrence (Disease) Rodents Surgery Transgenic mice Transplantation Tumor cell lines Tumorigenesis Tumors Xenografts |
title | Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20knockout%20of%20SHP2%20in%20ErbB2%20transgenic%20mice%20or%20inhibition%20in%20HER2-amplified%20breast%20cancer%20cell%20lines%20blocks%20oncogene%20expression%20and%20tumorigenesis&rft.jtitle=Oncogene&rft.au=Zhao,%20Hua&rft.date=2019-03&rft.volume=38&rft.issue=13&rft.spage=2275&rft.epage=2290&rft.pages=2275-2290&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-018-0574-8&rft_dat=%3Cgale_pubme%3EA580511650%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c603t-344fe85aecf433ffd760fe268a5f77f3d4618475ed55525e8f3d8ae959f88383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2199200050&rft_id=info:pmid/30467378&rft_galeid=A580511650&rfr_iscdi=true |