Loading…

Predicting response to BET inhibitors using computational modeling: A BEAT AML project study

•Predict AML treatment response based on tumor genomics using computational modeling.•Predict response to bromodomain (BRD) and extra-terminal (BET) inhibitor JQ1.•Patient cohort was 100 patients randomly selected from the BEAT AML project.•Predicted disease inhibition scores matched ex vivo IC50 wi...

Full description

Saved in:
Bibliographic Details
Published in:Leukemia research 2019-02, Vol.77, p.42-50
Main Authors: Drusbosky, Leylah M., Vidva, Robinson, Gera, Saji, Lakshminarayana, Anjanasree V., Shyamasundar, Vijayashree P., Agrawal, Ashish Kumar, Talawdekar, Anay, Abbasi, Taher, Vali, Shireen, Tognon, Cristina E., Kurtz, Stephen E., Tyner, Jeffrey W., McWeeney, Shannon K., Druker, Brian J., Cogle, Christopher R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-308f7868a70eea83544eecbb437cb55852a4e83c0d77e37d28211358c3a0f1663
cites cdi_FETCH-LOGICAL-c467t-308f7868a70eea83544eecbb437cb55852a4e83c0d77e37d28211358c3a0f1663
container_end_page 50
container_issue
container_start_page 42
container_title Leukemia research
container_volume 77
creator Drusbosky, Leylah M.
Vidva, Robinson
Gera, Saji
Lakshminarayana, Anjanasree V.
Shyamasundar, Vijayashree P.
Agrawal, Ashish Kumar
Talawdekar, Anay
Abbasi, Taher
Vali, Shireen
Tognon, Cristina E.
Kurtz, Stephen E.
Tyner, Jeffrey W.
McWeeney, Shannon K.
Druker, Brian J.
Cogle, Christopher R.
description •Predict AML treatment response based on tumor genomics using computational modeling.•Predict response to bromodomain (BRD) and extra-terminal (BET) inhibitor JQ1.•Patient cohort was 100 patients randomly selected from the BEAT AML project.•Predicted disease inhibition scores matched ex vivo IC50 with 86% accuracy.•Genomic predictors of response to BET inhibitor JQ1 were identified. Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia (AML), overall survival rates remain low. The ability to predict treatment response based on individual cancer genomics using computational modeling will aid in the development of novel therapeutics and personalize care. Here, we used a combination of genomics, computational biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain (BRD) and extra-terminal (BET) inhibitor. Computational biology modeling was used to generate patient-specific protein network maps of activated and inactivated protein pathways translated from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted by quantitatively measuring drug effect using a composite AML disease inhibition score. 93% of predicted disease inhibition scores matched the associated ex vivo IC50 value. Sensitivity and specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of response were identified. Patient samples harbouring chromosomal aberrations del(7q) or -7, +8, or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in both in silico and ex vivo assays. This study shows how a combination of genomics, computational modeling and chemosensitivity testing can identify network signatures associating with treatment response and can inform priority populations for future clinical trials of BET inhibitors.
doi_str_mv 10.1016/j.leukres.2018.11.010
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6442457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0145212618304715</els_id><sourcerecordid>30642575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-308f7868a70eea83544eecbb437cb55852a4e83c0d77e37d28211358c3a0f1663</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi0EokvbRwD5BRI8sR27PRRtqxaQFsFhe6tkOc5s6yUbR7ZTqW9fr7ZUcOI00sz__zPzEfIRWA0M2s_besD5d8RUNwx0DVAzYG_IArTildRcviULBkJWDTTtEfmQ0pYxJs_g7D054qwVjVRyQe5-Rey9y368pyVsCmNCmgO9vF5TPz74zucQE53TXuDCbpqzzT6MdqC70ONQ2ud0WeTLNV3-WNEphi26TFOe-6cT8m5jh4SnL_WY3N5cr6--VaufX79fLVeVE63KFWd6o3SrrWKItpwuBKLrOsGV66TUsrECNXesVwq56hvdAHCpHbdsA23Lj8nFIXeaux32Dscc7WCm6Hc2Pplgvfl3MvoHcx8eTStEI6QqAfIQ4GJIKeLm1QvM7HGbrXnBbfa4DYApuIvv09-LX11_-BbBl4MAy_uPHqNJzuPoCvNYMJk--P-seAZ1I5VB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting response to BET inhibitors using computational modeling: A BEAT AML project study</title><source>ScienceDirect Journals</source><creator>Drusbosky, Leylah M. ; Vidva, Robinson ; Gera, Saji ; Lakshminarayana, Anjanasree V. ; Shyamasundar, Vijayashree P. ; Agrawal, Ashish Kumar ; Talawdekar, Anay ; Abbasi, Taher ; Vali, Shireen ; Tognon, Cristina E. ; Kurtz, Stephen E. ; Tyner, Jeffrey W. ; McWeeney, Shannon K. ; Druker, Brian J. ; Cogle, Christopher R.</creator><creatorcontrib>Drusbosky, Leylah M. ; Vidva, Robinson ; Gera, Saji ; Lakshminarayana, Anjanasree V. ; Shyamasundar, Vijayashree P. ; Agrawal, Ashish Kumar ; Talawdekar, Anay ; Abbasi, Taher ; Vali, Shireen ; Tognon, Cristina E. ; Kurtz, Stephen E. ; Tyner, Jeffrey W. ; McWeeney, Shannon K. ; Druker, Brian J. ; Cogle, Christopher R.</creatorcontrib><description>•Predict AML treatment response based on tumor genomics using computational modeling.•Predict response to bromodomain (BRD) and extra-terminal (BET) inhibitor JQ1.•Patient cohort was 100 patients randomly selected from the BEAT AML project.•Predicted disease inhibition scores matched ex vivo IC50 with 86% accuracy.•Genomic predictors of response to BET inhibitor JQ1 were identified. Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia (AML), overall survival rates remain low. The ability to predict treatment response based on individual cancer genomics using computational modeling will aid in the development of novel therapeutics and personalize care. Here, we used a combination of genomics, computational biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain (BRD) and extra-terminal (BET) inhibitor. Computational biology modeling was used to generate patient-specific protein network maps of activated and inactivated protein pathways translated from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted by quantitatively measuring drug effect using a composite AML disease inhibition score. 93% of predicted disease inhibition scores matched the associated ex vivo IC50 value. Sensitivity and specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of response were identified. Patient samples harbouring chromosomal aberrations del(7q) or -7, +8, or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in both in silico and ex vivo assays. This study shows how a combination of genomics, computational modeling and chemosensitivity testing can identify network signatures associating with treatment response and can inform priority populations for future clinical trials of BET inhibitors.</description><identifier>ISSN: 0145-2126</identifier><identifier>EISSN: 1873-5835</identifier><identifier>DOI: 10.1016/j.leukres.2018.11.010</identifier><identifier>PMID: 30642575</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>AML ; Antineoplastic Agents - pharmacology ; BET inhibitor ; Chromosome Aberrations ; Computational Biology - methods ; Computational modeling ; Databases, Factual ; Drug response ; Gene Expression Regulation, Neoplastic - drug effects ; Genetics ; Humans ; JQ1 ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - pathology ; Models, Molecular ; Molecular Targeted Therapy ; Transcription Factors - antagonists &amp; inhibitors ; Transcription Factors - genetics</subject><ispartof>Leukemia research, 2019-02, Vol.77, p.42-50</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-308f7868a70eea83544eecbb437cb55852a4e83c0d77e37d28211358c3a0f1663</citedby><cites>FETCH-LOGICAL-c467t-308f7868a70eea83544eecbb437cb55852a4e83c0d77e37d28211358c3a0f1663</cites><orcidid>0000-0001-5422-6863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30642575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drusbosky, Leylah M.</creatorcontrib><creatorcontrib>Vidva, Robinson</creatorcontrib><creatorcontrib>Gera, Saji</creatorcontrib><creatorcontrib>Lakshminarayana, Anjanasree V.</creatorcontrib><creatorcontrib>Shyamasundar, Vijayashree P.</creatorcontrib><creatorcontrib>Agrawal, Ashish Kumar</creatorcontrib><creatorcontrib>Talawdekar, Anay</creatorcontrib><creatorcontrib>Abbasi, Taher</creatorcontrib><creatorcontrib>Vali, Shireen</creatorcontrib><creatorcontrib>Tognon, Cristina E.</creatorcontrib><creatorcontrib>Kurtz, Stephen E.</creatorcontrib><creatorcontrib>Tyner, Jeffrey W.</creatorcontrib><creatorcontrib>McWeeney, Shannon K.</creatorcontrib><creatorcontrib>Druker, Brian J.</creatorcontrib><creatorcontrib>Cogle, Christopher R.</creatorcontrib><title>Predicting response to BET inhibitors using computational modeling: A BEAT AML project study</title><title>Leukemia research</title><addtitle>Leuk Res</addtitle><description>•Predict AML treatment response based on tumor genomics using computational modeling.•Predict response to bromodomain (BRD) and extra-terminal (BET) inhibitor JQ1.•Patient cohort was 100 patients randomly selected from the BEAT AML project.•Predicted disease inhibition scores matched ex vivo IC50 with 86% accuracy.•Genomic predictors of response to BET inhibitor JQ1 were identified. Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia (AML), overall survival rates remain low. The ability to predict treatment response based on individual cancer genomics using computational modeling will aid in the development of novel therapeutics and personalize care. Here, we used a combination of genomics, computational biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain (BRD) and extra-terminal (BET) inhibitor. Computational biology modeling was used to generate patient-specific protein network maps of activated and inactivated protein pathways translated from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted by quantitatively measuring drug effect using a composite AML disease inhibition score. 93% of predicted disease inhibition scores matched the associated ex vivo IC50 value. Sensitivity and specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of response were identified. Patient samples harbouring chromosomal aberrations del(7q) or -7, +8, or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in both in silico and ex vivo assays. This study shows how a combination of genomics, computational modeling and chemosensitivity testing can identify network signatures associating with treatment response and can inform priority populations for future clinical trials of BET inhibitors.</description><subject>AML</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>BET inhibitor</subject><subject>Chromosome Aberrations</subject><subject>Computational Biology - methods</subject><subject>Computational modeling</subject><subject>Databases, Factual</subject><subject>Drug response</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genetics</subject><subject>Humans</subject><subject>JQ1</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Models, Molecular</subject><subject>Molecular Targeted Therapy</subject><subject>Transcription Factors - antagonists &amp; inhibitors</subject><subject>Transcription Factors - genetics</subject><issn>0145-2126</issn><issn>1873-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi0EokvbRwD5BRI8sR27PRRtqxaQFsFhe6tkOc5s6yUbR7ZTqW9fr7ZUcOI00sz__zPzEfIRWA0M2s_besD5d8RUNwx0DVAzYG_IArTildRcviULBkJWDTTtEfmQ0pYxJs_g7D054qwVjVRyQe5-Rey9y368pyVsCmNCmgO9vF5TPz74zucQE53TXuDCbpqzzT6MdqC70ONQ2ud0WeTLNV3-WNEphi26TFOe-6cT8m5jh4SnL_WY3N5cr6--VaufX79fLVeVE63KFWd6o3SrrWKItpwuBKLrOsGV66TUsrECNXesVwq56hvdAHCpHbdsA23Lj8nFIXeaux32Dscc7WCm6Hc2Pplgvfl3MvoHcx8eTStEI6QqAfIQ4GJIKeLm1QvM7HGbrXnBbfa4DYApuIvv09-LX11_-BbBl4MAy_uPHqNJzuPoCvNYMJk--P-seAZ1I5VB</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Drusbosky, Leylah M.</creator><creator>Vidva, Robinson</creator><creator>Gera, Saji</creator><creator>Lakshminarayana, Anjanasree V.</creator><creator>Shyamasundar, Vijayashree P.</creator><creator>Agrawal, Ashish Kumar</creator><creator>Talawdekar, Anay</creator><creator>Abbasi, Taher</creator><creator>Vali, Shireen</creator><creator>Tognon, Cristina E.</creator><creator>Kurtz, Stephen E.</creator><creator>Tyner, Jeffrey W.</creator><creator>McWeeney, Shannon K.</creator><creator>Druker, Brian J.</creator><creator>Cogle, Christopher R.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5422-6863</orcidid></search><sort><creationdate>20190201</creationdate><title>Predicting response to BET inhibitors using computational modeling: A BEAT AML project study</title><author>Drusbosky, Leylah M. ; Vidva, Robinson ; Gera, Saji ; Lakshminarayana, Anjanasree V. ; Shyamasundar, Vijayashree P. ; Agrawal, Ashish Kumar ; Talawdekar, Anay ; Abbasi, Taher ; Vali, Shireen ; Tognon, Cristina E. ; Kurtz, Stephen E. ; Tyner, Jeffrey W. ; McWeeney, Shannon K. ; Druker, Brian J. ; Cogle, Christopher R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-308f7868a70eea83544eecbb437cb55852a4e83c0d77e37d28211358c3a0f1663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AML</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>BET inhibitor</topic><topic>Chromosome Aberrations</topic><topic>Computational Biology - methods</topic><topic>Computational modeling</topic><topic>Databases, Factual</topic><topic>Drug response</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genetics</topic><topic>Humans</topic><topic>JQ1</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Models, Molecular</topic><topic>Molecular Targeted Therapy</topic><topic>Transcription Factors - antagonists &amp; inhibitors</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drusbosky, Leylah M.</creatorcontrib><creatorcontrib>Vidva, Robinson</creatorcontrib><creatorcontrib>Gera, Saji</creatorcontrib><creatorcontrib>Lakshminarayana, Anjanasree V.</creatorcontrib><creatorcontrib>Shyamasundar, Vijayashree P.</creatorcontrib><creatorcontrib>Agrawal, Ashish Kumar</creatorcontrib><creatorcontrib>Talawdekar, Anay</creatorcontrib><creatorcontrib>Abbasi, Taher</creatorcontrib><creatorcontrib>Vali, Shireen</creatorcontrib><creatorcontrib>Tognon, Cristina E.</creatorcontrib><creatorcontrib>Kurtz, Stephen E.</creatorcontrib><creatorcontrib>Tyner, Jeffrey W.</creatorcontrib><creatorcontrib>McWeeney, Shannon K.</creatorcontrib><creatorcontrib>Druker, Brian J.</creatorcontrib><creatorcontrib>Cogle, Christopher R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drusbosky, Leylah M.</au><au>Vidva, Robinson</au><au>Gera, Saji</au><au>Lakshminarayana, Anjanasree V.</au><au>Shyamasundar, Vijayashree P.</au><au>Agrawal, Ashish Kumar</au><au>Talawdekar, Anay</au><au>Abbasi, Taher</au><au>Vali, Shireen</au><au>Tognon, Cristina E.</au><au>Kurtz, Stephen E.</au><au>Tyner, Jeffrey W.</au><au>McWeeney, Shannon K.</au><au>Druker, Brian J.</au><au>Cogle, Christopher R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting response to BET inhibitors using computational modeling: A BEAT AML project study</atitle><jtitle>Leukemia research</jtitle><addtitle>Leuk Res</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>77</volume><spage>42</spage><epage>50</epage><pages>42-50</pages><issn>0145-2126</issn><eissn>1873-5835</eissn><abstract>•Predict AML treatment response based on tumor genomics using computational modeling.•Predict response to bromodomain (BRD) and extra-terminal (BET) inhibitor JQ1.•Patient cohort was 100 patients randomly selected from the BEAT AML project.•Predicted disease inhibition scores matched ex vivo IC50 with 86% accuracy.•Genomic predictors of response to BET inhibitor JQ1 were identified. Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia (AML), overall survival rates remain low. The ability to predict treatment response based on individual cancer genomics using computational modeling will aid in the development of novel therapeutics and personalize care. Here, we used a combination of genomics, computational biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain (BRD) and extra-terminal (BET) inhibitor. Computational biology modeling was used to generate patient-specific protein network maps of activated and inactivated protein pathways translated from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted by quantitatively measuring drug effect using a composite AML disease inhibition score. 93% of predicted disease inhibition scores matched the associated ex vivo IC50 value. Sensitivity and specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of response were identified. Patient samples harbouring chromosomal aberrations del(7q) or -7, +8, or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in both in silico and ex vivo assays. This study shows how a combination of genomics, computational modeling and chemosensitivity testing can identify network signatures associating with treatment response and can inform priority populations for future clinical trials of BET inhibitors.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30642575</pmid><doi>10.1016/j.leukres.2018.11.010</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5422-6863</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0145-2126
ispartof Leukemia research, 2019-02, Vol.77, p.42-50
issn 0145-2126
1873-5835
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6442457
source ScienceDirect Journals
subjects AML
Antineoplastic Agents - pharmacology
BET inhibitor
Chromosome Aberrations
Computational Biology - methods
Computational modeling
Databases, Factual
Drug response
Gene Expression Regulation, Neoplastic - drug effects
Genetics
Humans
JQ1
Leukemia, Myeloid, Acute - drug therapy
Leukemia, Myeloid, Acute - genetics
Leukemia, Myeloid, Acute - pathology
Models, Molecular
Molecular Targeted Therapy
Transcription Factors - antagonists & inhibitors
Transcription Factors - genetics
title Predicting response to BET inhibitors using computational modeling: A BEAT AML project study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20response%20to%20BET%20inhibitors%20using%20computational%20modeling:%20A%20BEAT%20AML%20project%20study&rft.jtitle=Leukemia%20research&rft.au=Drusbosky,%20Leylah%20M.&rft.date=2019-02-01&rft.volume=77&rft.spage=42&rft.epage=50&rft.pages=42-50&rft.issn=0145-2126&rft.eissn=1873-5835&rft_id=info:doi/10.1016/j.leukres.2018.11.010&rft_dat=%3Cpubmed_cross%3E30642575%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-308f7868a70eea83544eecbb437cb55852a4e83c0d77e37d28211358c3a0f1663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30642575&rfr_iscdi=true