Loading…

Investigation of Efficacy Enhancing and Toxicity Reducing Mechanism of Combination of Aconiti Lateralis Radix Praeparata and Paeoniae Radix Alba in Adjuvant-Induced Arthritis Rats by Metabolomics

Combination of Aconiti Lateralis Radix Praeparata (FZ) and Paeoniae Radix Alba (BS) shows a significant effect in rheumatoid arthritis (RA). This study aimed to investigate the efficacy enhancing and toxicity reducing mechanism of combination of them in adjuvant-induced arthritis (AIA) rats by metab...

Full description

Saved in:
Bibliographic Details
Published in:Evidence-based complementary and alternative medicine 2019-01, Vol.2019 (2019), p.1-15
Main Authors: Peng, Cheng, Gong, Xiao-hong, Yu, Lei, Xie, Jun, Liu, Meichen, Feng, Wu-wen, Xie, Yun-fei, Li, Yunxia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Combination of Aconiti Lateralis Radix Praeparata (FZ) and Paeoniae Radix Alba (BS) shows a significant effect in rheumatoid arthritis (RA). This study aimed to investigate the efficacy enhancing and toxicity reducing mechanism of combination of them in adjuvant-induced arthritis (AIA) rats by metabolomics. Rats were randomly divided into seven groups, including A (healthy control), B (model control), C1 (therapy group), C2 (efficacy enhancing group), D1 (toxicity group), and D2 (toxicity reducing group), and dexamethasone group was used as positive control. The plasma biochemical indexes showed that therapeutic dose of lipid-soluble alkaloids of FZ could significantly inhibit the concentrations of IL-1β, TNF-α, and IFN-γ in AIA rats, and combination with total glucosides of peony could further reduce the concentration of IL-1β. Then, UPLC-LTQ/Orbitrap MS with untargeted metabolomics was performed to identify the possible metabolites and pathways. Through multivariate data analysis of therapeutic dose groups (A vs. B vs. C1 vs. C2) and multivariate data analysis of toxic dose groups (A vs. B vs. D1 vs. D2), 10 and 7 biomarkers were identified based on biomarker analysis, respectively. After inducing AIA model, the plasma contents of spermidine, vanillylmandelic acid, catechol, and linoleate were increased significantly, and the contents of citric acid, L-tyrosine, L-phenylalanine, leucine, L-tryptophan, and uridine 5'-monophosphate (UMP) were decreased significantly. High dose of lipid-soluble alkaloids of FZ could increase the plasma contents of L-lysine, L-arginine, and deoxycholic acid, while the plasma contents of UMP, carnitine, N-formylanthranilic acid, and adenosine were decreased significantly. The pathway analysis indicated that therapeutic dose of lipid-soluble alkaloids of FZ could regulate energy and amino acid metabolic disorders in AIA rats. However, toxic dose could cause bile acid, fat, amino acid, and energy metabolic disorders. And combination with total glucosides of peony could enhance the therapeutic effects and attenuate the toxicity induced by lipid-soluble alkaloids of FZ.
ISSN:1741-427X
1741-4288
DOI:10.1155/2019/9864841