Loading…

NLRP3 inflammasome in NMDA-induced retinal excitotoxicity

N-methyl-D-aspartate (NMDA)-induced excitotoxicity is an acute form of experimental retinal injury as a result of overactivation of glutamate receptors. NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain containing-3) inflammasome, one of the most studied sensors o...

Full description

Saved in:
Bibliographic Details
Published in:Experimental eye research 2019-04, Vol.181, p.136-144
Main Authors: Tsoka, Pavlina, Barbisan, Paulo R., Kataoka, Keiko, Chen, Xiaohong Nancy, Tian, Bo, Bouzika, Peggy, Miller, Joan W., Paschalis, Eleftherios I., Vavvas, Demetrios G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:N-methyl-D-aspartate (NMDA)-induced excitotoxicity is an acute form of experimental retinal injury as a result of overactivation of glutamate receptors. NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain containing-3) inflammasome, one of the most studied sensors of innate immunity, has been reported to play a critical role in retinal neurodegeneration with controversial implications regarding neuroprotection and cell death. Thus far, it has not been elucidated whether NMDA-mediated excitotoxicity can trigger NLRP3 inflammasome in vivo. Moreover, it is unknown if NLRP3 is beneficial or detrimental to NMDA-mediated retinal cell death. Here, we employed a murine model of NMDA-induced retinal excitotoxicity by administering 100 nmoles of NMDA intravitreally, which resulted in massive TUNEL+ (TdT-dUTP terminal nick-end labelling) cell death in all retinal layers and especially in retinal ganglion cells (RGCs) 24 h post injection. NMDA insult in the retina potentiates macrophage/microglia cell infiltration, primes the NLRP3 inflammasome in a transcription-dependent manner and induces the expression of interleukin-1β (IL-1β). However, despite NLRP3 inflammasome upregulation, systemic deletion of Nlrp3 or Casp1 (caspase-1) did not significantly alter the NMDA-induced, excitotoxicity-mediated TUNEL+ retinal cell death at 24 h (acute phase). Similarly, the deletion of the two aforementioned genes did not alter the survival of the Brn3a+ (brain-specific homeobox/POU domain protein 3A) RGCs in a significant way at 3- or 7-days post injection (long-term phase). Our results indicate that NMDA-mediated retinal excitotoxicity induces immune cell recruitment and NLRP3 inflammasome activity even though inflammasome-mediated neuroinflammation is not a leading contributing factor to cell death in this type of retinal injury. •NMDA excitotoxicity induces immune cell infiltration in the retina.•NMDA retinal excitotoxicity triggers NLRP3 inflammasome priming.•Nlrp3−/− or Casp1−/− do not have major impact on overall neuronal loss after NDMA.
ISSN:0014-4835
1096-0007
DOI:10.1016/j.exer.2019.01.018