Loading…

Implications of the strain irreversibility cliff on the fabrication of particle-accelerator magnets made of restacked-rod-process Nb3Sn wires

The strain irreversibility cliff (SIC), marking the abrupt change of the intrinsic irreversible strain limit ε irr,0 as a function of heat-treatment (HT) temperature θ in Nb 3 Sn superconducting wires made by the restacked-rod process (RRP ® ), is confirmed in various wire designs. It adds to the co...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-04, Vol.9 (1), p.5466-5466, Article 5466
Main Authors: Cheggour, Najib, Stauffer, Theodore C., Starch, William, Goodrich, Loren F., Splett, Jolene D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The strain irreversibility cliff (SIC), marking the abrupt change of the intrinsic irreversible strain limit ε irr,0 as a function of heat-treatment (HT) temperature θ in Nb 3 Sn superconducting wires made by the restacked-rod process (RRP ® ), is confirmed in various wire designs. It adds to the complexity of reconciling conflicting requirements on conductors for fabricating magnets. Those intended for the high-luminosity upgrade of the Large Hardon Collider (LHC) at the European Organization for Nuclear Research (CERN) facility require maintaining the residual resistivity ratio RRR of conductors above 150 to ensure stability of magnets against quenching. This benchmark may compromise the conductors’ mechanical integrity if their ε irr,0 is within or at the bottom of SIC. In this coupled investigation of strain and RRR properties to fully assess the implications of SIC, we introduce an electro-mechanical stability criterion that takes into account both aspects. For standard-Sn billets, this requires a strikingly narrow HT temperature window that is impractical. On the other hand, reduced-Sn billets offer a significantly wider choice of θ , not only for ensuring that ε irr,0 is located at the SIC plateau while RRR  ≥ 150, but also for containing the strain-induced irreversible degradation of the conductor’s critical-current beyond ε irr,0 . This study suggests that HT of LHC magnets, made of reduced-Sn wires having a Nb/Sn ratio of 3.6 and 108/127 restacking architecture, be operated at θ in the range of 680 to 695 °C (when the dwell time is 48 hours).
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-41817-7