Loading…
Polarimetry of photon echo on charged and neutral excitons in semiconductor quantum wells
Coherent optical spectroscopy such as four-wave mixing and photon echo generation deliver rich information on the energy levels involved in optical transitions through the analysis of polarization of the coherent response. In semiconductors, it can be applied to distinguish between different exciton...
Saved in:
Published in: | Scientific reports 2019-04, Vol.9 (1), p.5666, Article 5666 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coherent optical spectroscopy such as four-wave mixing and photon echo generation deliver rich information on the energy levels involved in optical transitions through the analysis of polarization of the coherent response. In semiconductors, it can be applied to distinguish between different exciton complexes, which is a highly non-trivial problem in optical spectroscopy. We develop a simple approach based on photon echo polarimetry, in which polar plots of the photon echo amplitude are measured as function of the angle
φ
between the linear polarizations of the two exciting pulses. The rosette-like polar plots reveal a distinct difference between the neutral and charged exciton (trion) optical transitions in semiconductor nanostructures. We demonstrate this experimentally by photon echo polarimetry of a CdTe/(Cd, Mg)Te quantum well. The echoes of the trion and donor-bound exciton are linearly polarized at the angle 2
φ
with respect to the first pulse polarization and their amplitudes are weakly dependent on
φ
. While on the exciton the photon echo is co-polarized with the second exciting pulse and its amplitude scales as cos
φ
. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-42208-8 |