Loading…
Effects of Disorder on Thermoelectric Properties of Semiconducting Polymers
Organic materials have attracted recent interest as thermoelectric (TE) converters due to their low cost and ease of fabrication. We examine the effects of disorder on the TE properties of semiconducting polymers based on the Gaussian disorder model (GDM) for site energies while employing Pauli’s ma...
Saved in:
Published in: | Scientific reports 2019-04, Vol.9 (1), p.5820-5820, Article 5820 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organic materials have attracted recent interest as thermoelectric (TE) converters due to their low cost and ease of fabrication. We examine the effects of disorder on the TE properties of semiconducting polymers based on the Gaussian disorder model (GDM) for site energies while employing Pauli’s master equation approach to model hopping between localized sites. Our model is in good agreement with experimental results and a useful tool to study hopping transport. We show that stronger overlap between sites can improve the electrical conductivity without adversely affecting the Seebeck coefficient. We find that positional disorder aids the formation of new conduction paths with an increased probability of carriers in high energy sites, leading to an increase in electrical conductivity while leaving the Seebeck unchanged. On the other hand, energetic disorder leads to increased energy gaps between sites, hindering transport. This adversely affects conductivity while only slightly increasing Seebeck and results in lower TE power factors. Furthermore, positional correlation primarily affects conductivity, while correlation in site energies has no effect on TE properties of polymers. Our results also show that the Lorenz number increases with Seebeck coefficient, largely deviating from the Sommerfeld value, in agreement with experiments and in contrast to band conductors. We conclude that reducing energetic disorder and positional correlation, while increasing positional disorder can lead to higher TE power factors. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-42265-z |