Loading…

Acute toxicity of copper hydroxide and glyphosate mixture in Clarias gariepinus: interaction and prediction using mixture assessment models

The study aimed to assess the single and joint lethal toxicity, type of interaction and the extent to which simple mathematical model of concentration addition (CA), independent action (IA) and generalized concentration addition (GCA) could predict the joint toxicity of copper hydroxide and glyphosa...

Full description

Saved in:
Bibliographic Details
Published in:Environmental health and toxicology 2019-03, Vol.34 (1), p.e2019003-e2019003
Main Author: Kingsley, Kanu C
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study aimed to assess the single and joint lethal toxicity, type of interaction and the extent to which simple mathematical model of concentration addition (CA), independent action (IA) and generalized concentration addition (GCA) could predict the joint toxicity of copper hydroxide and glyphosate mixture in Clarias gariepinus. Static bioassay were setup to determine the individual and combined (based on ratio 1:2) lethal concentrations (LCx) of the pesticides. Data from the static bioassays were then fitted into the synergistic ratio (SR), concentration-addition (toxicity unit; TU) and isobologram model to determine the type of interaction between the different classes of pesticides, while the CA, IA and GCA models were used to predicted the observed mixture effects. The estimated 24 h, 48 h, 72 h and 96 h LC50 for copper hydroxide were 198.66 mg/L, 167.51 mg/L, 138.64 mg/L, and 104.82 mg/L; glyphosate were 162.92 mg/L, 103.88 mg/L, 61.95 mg/L, and 52.6l mg/L; while the mixtures were 63.18 mg/L, 59.06 mg/L, 56.42 mg/L, and 50.67 mg/L, respectively. Glyphosate was 2 times more toxic than copper hydroxide to C. gariepinus when acting singly. The SR and RTU was
ISSN:2233-6567
2233-6567
DOI:10.5620/eht.e2019003