Loading…

Control of Silver Coating on Raman Label Incorporated Gold Nanoparticles Assembled Silica Nanoparticles

Signal reproducibility in surface-enhanced Raman scattering (SERS) remains a challenge, limiting the scope of the quantitative applications of SERS. This drawback in quantitative SERS sensing can be overcome by incorporating internal standard chemicals between the core and shell structures of metal...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2019-03, Vol.20 (6), p.1258
Main Authors: Pham, Xuan-Hung, Hahm, Eunil, Kang, Eunji, Son, Byung Sung, Ha, Yuna, Kim, Hyung-Mo, Jeong, Dae Hong, Jun, Bong-Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Signal reproducibility in surface-enhanced Raman scattering (SERS) remains a challenge, limiting the scope of the quantitative applications of SERS. This drawback in quantitative SERS sensing can be overcome by incorporating internal standard chemicals between the core and shell structures of metal nanoparticles (NPs). Herein, we prepared a SERS-active core Raman labeling compound (RLC) shell material, based on Au⁻Ag NPs and assembled silica NPs (SiO₂@Au@RLC@Ag NPs). Three types of RLCs were used as candidates for internal standards, including 4-mercaptobenzoic acid (4-MBA), 4-aminothiophenol (4-ATP) and 4-methylbenzenethiol (4-MBT), and their effects on the deposition of a silver shell were investigated. The formation of the Ag shell was strongly dependent on the concentration of the silver ion. The negative charge of SiO₂@Au@RLCs facilitated the formation of an Ag shell. In various pH solutions, the size of the Ag NPs was larger at a low pH and smaller at a higher pH, due to a decrease in the reduction rate. The results provide a deeper understanding of features in silver deposition, to guide further research and development of a strong and reliable SERS probe based on SiO₂@Au@RLC@Ag NPs.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20061258