Loading…
A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells
Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in...
Saved in:
Published in: | Immunity (Cambridge, Mass.) Mass.), 2019-02, Vol.50 (2), p.362-377.e6 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553 |
---|---|
cites | cdi_FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553 |
container_end_page | 377.e6 |
container_issue | 2 |
container_start_page | 362 |
container_title | Immunity (Cambridge, Mass.) |
container_volume | 50 |
creator | Van Gool, Frédéric Nguyen, Michelle L.T. Mumbach, Maxwell R. Satpathy, Ansuman T. Rosenthal, Wendy L. Giacometti, Simone Le, Duy T. Liu, Weihong Brusko, Todd M. Anderson, Mark S. Rudensky, Alexander Y. Marson, Alexander Chang, Howard Y. Bluestone, Jeffrey A. |
description | Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells.
[Display omitted]
•IPEX mutation M370I leads to unrestrained Th2 immune response•M370I mutation generates Th2-like Treg cells expressing GATA3 and Th2 cytokines•M370I mutation induces de novo Foxp3 binding sites in the Th2 locus•M370I Treg cells have increased chromatin interaction at the Th2 locus
Naturally occurring FOXP3 mutations provide unique opportunities to leverage clinical observations to increase our understanding of fundamental Treg cell biology. Van Gool et al. identify a mutation in the domain-swap interface of FOXP3 in IPEX patients and demonstrate a direct role for the mutant FOXP3 in reprogramming Treg cells to acquire a Th2-like phenotype, leading to Th2-mediated autoimmunity. |
doi_str_mv | 10.1016/j.immuni.2018.12.016 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6476426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761318305648</els_id><sourcerecordid>2194759524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553</originalsourceid><addsrcrecordid>eNp9kc1u3CAUha2qUfPTvkFVIXXTjR3AGMymUjTNNJVSVapmjzC-JIxscMEeNW9fJpOkTRZdXXT4OHA4RfGe4Ipgws-3lRvHxbuKYtJWhFZZfFWcECxFyUiLX-_XgpWCk_q4OE1pizFhjcRviuMai4zV7UlhL9D3ZdazCx45j-ZbQJuofTLRTffiWps5RLQOv6cafYluBwlt0BUME0RE0aW1cAAWbx5dfsLNMuis3mV0BcOQ3hZHVg8J3j3Ms2KzvtysrsrrH1-_rS6uS9MwOpdStlR21pLeYN5L21HO2j6PWvTGMMqMoUCkZDXtBaattoZ1kgrouOVNU58Vnw-209KN0Bvwc9SDmqIbdbxTQTv1fMe7W3UTdoozwRnl2eDTg0EMvxZIsxpdMjmB9hCWpCgRsqkp5yKjH1-g27BEn9NlSjLRyIayTLEDZWJIKYJ9egzBat-j2qpDj2rfoyJUZTEf-_BvkKdDj8X9TQr5N3cOokrGgTfQu5gLUX1w_7_hDxqksQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194759524</pqid></control><display><type>article</type><title>A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Van Gool, Frédéric ; Nguyen, Michelle L.T. ; Mumbach, Maxwell R. ; Satpathy, Ansuman T. ; Rosenthal, Wendy L. ; Giacometti, Simone ; Le, Duy T. ; Liu, Weihong ; Brusko, Todd M. ; Anderson, Mark S. ; Rudensky, Alexander Y. ; Marson, Alexander ; Chang, Howard Y. ; Bluestone, Jeffrey A.</creator><creatorcontrib>Van Gool, Frédéric ; Nguyen, Michelle L.T. ; Mumbach, Maxwell R. ; Satpathy, Ansuman T. ; Rosenthal, Wendy L. ; Giacometti, Simone ; Le, Duy T. ; Liu, Weihong ; Brusko, Todd M. ; Anderson, Mark S. ; Rudensky, Alexander Y. ; Marson, Alexander ; Chang, Howard Y. ; Bluestone, Jeffrey A.</creatorcontrib><description>Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells.
[Display omitted]
•IPEX mutation M370I leads to unrestrained Th2 immune response•M370I mutation generates Th2-like Treg cells expressing GATA3 and Th2 cytokines•M370I mutation induces de novo Foxp3 binding sites in the Th2 locus•M370I Treg cells have increased chromatin interaction at the Th2 locus
Naturally occurring FOXP3 mutations provide unique opportunities to leverage clinical observations to increase our understanding of fundamental Treg cell biology. Van Gool et al. identify a mutation in the domain-swap interface of FOXP3 in IPEX patients and demonstrate a direct role for the mutant FOXP3 in reprogramming Treg cells to acquire a Th2-like phenotype, leading to Th2-mediated autoimmunity.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2018.12.016</identifier><identifier>PMID: 30709738</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Advisors ; Animals ; autoimmunity ; Cell Differentiation - genetics ; Cell Differentiation - immunology ; Child ; Chromatin ; Cytokines ; Cytokines - genetics ; Cytokines - immunology ; Cytokines - metabolism ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Forkhead protein ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - immunology ; Forkhead Transcription Factors - metabolism ; Foxp3 ; Foxp3 protein ; GATA3 ; Gene Expression Regulation ; Gene silencing ; Genetic Diseases, X-Linked - genetics ; Genetic Diseases, X-Linked - immunology ; Genetic Diseases, X-Linked - metabolism ; Genomic analysis ; Genomics ; Genotype & phenotype ; Helper cells ; Homeostasis ; Humans ; Immune response ; Immune system ; Immunological tolerance ; Immunoprecipitation ; Immunoregulation ; IPEX ; Laboratories ; Lymphocytes ; Lymphocytes T ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; Mutation ; Patients ; Polyendocrinopathies, Autoimmune - genetics ; Polyendocrinopathies, Autoimmune - immunology ; Polyendocrinopathies, Autoimmune - metabolism ; Proteins ; regulatory T cells ; Ribonucleic acid ; RNA ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - metabolism ; Th2 Cells - immunology ; Th2 Cells - metabolism ; Th2-like Treg ; Transcription factors</subject><ispartof>Immunity (Cambridge, Mass.), 2019-02, Vol.50 (2), p.362-377.e6</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 19, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553</citedby><cites>FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30709738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Gool, Frédéric</creatorcontrib><creatorcontrib>Nguyen, Michelle L.T.</creatorcontrib><creatorcontrib>Mumbach, Maxwell R.</creatorcontrib><creatorcontrib>Satpathy, Ansuman T.</creatorcontrib><creatorcontrib>Rosenthal, Wendy L.</creatorcontrib><creatorcontrib>Giacometti, Simone</creatorcontrib><creatorcontrib>Le, Duy T.</creatorcontrib><creatorcontrib>Liu, Weihong</creatorcontrib><creatorcontrib>Brusko, Todd M.</creatorcontrib><creatorcontrib>Anderson, Mark S.</creatorcontrib><creatorcontrib>Rudensky, Alexander Y.</creatorcontrib><creatorcontrib>Marson, Alexander</creatorcontrib><creatorcontrib>Chang, Howard Y.</creatorcontrib><creatorcontrib>Bluestone, Jeffrey A.</creatorcontrib><title>A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells.
[Display omitted]
•IPEX mutation M370I leads to unrestrained Th2 immune response•M370I mutation generates Th2-like Treg cells expressing GATA3 and Th2 cytokines•M370I mutation induces de novo Foxp3 binding sites in the Th2 locus•M370I Treg cells have increased chromatin interaction at the Th2 locus
Naturally occurring FOXP3 mutations provide unique opportunities to leverage clinical observations to increase our understanding of fundamental Treg cell biology. Van Gool et al. identify a mutation in the domain-swap interface of FOXP3 in IPEX patients and demonstrate a direct role for the mutant FOXP3 in reprogramming Treg cells to acquire a Th2-like phenotype, leading to Th2-mediated autoimmunity.</description><subject>Advisors</subject><subject>Animals</subject><subject>autoimmunity</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - immunology</subject><subject>Child</subject><subject>Chromatin</subject><subject>Cytokines</subject><subject>Cytokines - genetics</subject><subject>Cytokines - immunology</subject><subject>Cytokines - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Forkhead protein</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - immunology</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Foxp3</subject><subject>Foxp3 protein</subject><subject>GATA3</subject><subject>Gene Expression Regulation</subject><subject>Gene silencing</subject><subject>Genetic Diseases, X-Linked - genetics</subject><subject>Genetic Diseases, X-Linked - immunology</subject><subject>Genetic Diseases, X-Linked - metabolism</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Helper cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunological tolerance</subject><subject>Immunoprecipitation</subject><subject>Immunoregulation</subject><subject>IPEX</subject><subject>Laboratories</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mutation</subject><subject>Patients</subject><subject>Polyendocrinopathies, Autoimmune - genetics</subject><subject>Polyendocrinopathies, Autoimmune - immunology</subject><subject>Polyendocrinopathies, Autoimmune - metabolism</subject><subject>Proteins</subject><subject>regulatory T cells</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>Th2 Cells - immunology</subject><subject>Th2 Cells - metabolism</subject><subject>Th2-like Treg</subject><subject>Transcription factors</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u3CAUha2qUfPTvkFVIXXTjR3AGMymUjTNNJVSVapmjzC-JIxscMEeNW9fJpOkTRZdXXT4OHA4RfGe4Ipgws-3lRvHxbuKYtJWhFZZfFWcECxFyUiLX-_XgpWCk_q4OE1pizFhjcRviuMai4zV7UlhL9D3ZdazCx45j-ZbQJuofTLRTffiWps5RLQOv6cafYluBwlt0BUME0RE0aW1cAAWbx5dfsLNMuis3mV0BcOQ3hZHVg8J3j3Ms2KzvtysrsrrH1-_rS6uS9MwOpdStlR21pLeYN5L21HO2j6PWvTGMMqMoUCkZDXtBaattoZ1kgrouOVNU58Vnw-209KN0Bvwc9SDmqIbdbxTQTv1fMe7W3UTdoozwRnl2eDTg0EMvxZIsxpdMjmB9hCWpCgRsqkp5yKjH1-g27BEn9NlSjLRyIayTLEDZWJIKYJ9egzBat-j2qpDj2rfoyJUZTEf-_BvkKdDj8X9TQr5N3cOokrGgTfQu5gLUX1w_7_hDxqksQQ</recordid><startdate>20190219</startdate><enddate>20190219</enddate><creator>Van Gool, Frédéric</creator><creator>Nguyen, Michelle L.T.</creator><creator>Mumbach, Maxwell R.</creator><creator>Satpathy, Ansuman T.</creator><creator>Rosenthal, Wendy L.</creator><creator>Giacometti, Simone</creator><creator>Le, Duy T.</creator><creator>Liu, Weihong</creator><creator>Brusko, Todd M.</creator><creator>Anderson, Mark S.</creator><creator>Rudensky, Alexander Y.</creator><creator>Marson, Alexander</creator><creator>Chang, Howard Y.</creator><creator>Bluestone, Jeffrey A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190219</creationdate><title>A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells</title><author>Van Gool, Frédéric ; Nguyen, Michelle L.T. ; Mumbach, Maxwell R. ; Satpathy, Ansuman T. ; Rosenthal, Wendy L. ; Giacometti, Simone ; Le, Duy T. ; Liu, Weihong ; Brusko, Todd M. ; Anderson, Mark S. ; Rudensky, Alexander Y. ; Marson, Alexander ; Chang, Howard Y. ; Bluestone, Jeffrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advisors</topic><topic>Animals</topic><topic>autoimmunity</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - immunology</topic><topic>Child</topic><topic>Chromatin</topic><topic>Cytokines</topic><topic>Cytokines - genetics</topic><topic>Cytokines - immunology</topic><topic>Cytokines - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Forkhead protein</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - immunology</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Foxp3</topic><topic>Foxp3 protein</topic><topic>GATA3</topic><topic>Gene Expression Regulation</topic><topic>Gene silencing</topic><topic>Genetic Diseases, X-Linked - genetics</topic><topic>Genetic Diseases, X-Linked - immunology</topic><topic>Genetic Diseases, X-Linked - metabolism</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Helper cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunological tolerance</topic><topic>Immunoprecipitation</topic><topic>Immunoregulation</topic><topic>IPEX</topic><topic>Laboratories</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mutation</topic><topic>Patients</topic><topic>Polyendocrinopathies, Autoimmune - genetics</topic><topic>Polyendocrinopathies, Autoimmune - immunology</topic><topic>Polyendocrinopathies, Autoimmune - metabolism</topic><topic>Proteins</topic><topic>regulatory T cells</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>Th2 Cells - immunology</topic><topic>Th2 Cells - metabolism</topic><topic>Th2-like Treg</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Gool, Frédéric</creatorcontrib><creatorcontrib>Nguyen, Michelle L.T.</creatorcontrib><creatorcontrib>Mumbach, Maxwell R.</creatorcontrib><creatorcontrib>Satpathy, Ansuman T.</creatorcontrib><creatorcontrib>Rosenthal, Wendy L.</creatorcontrib><creatorcontrib>Giacometti, Simone</creatorcontrib><creatorcontrib>Le, Duy T.</creatorcontrib><creatorcontrib>Liu, Weihong</creatorcontrib><creatorcontrib>Brusko, Todd M.</creatorcontrib><creatorcontrib>Anderson, Mark S.</creatorcontrib><creatorcontrib>Rudensky, Alexander Y.</creatorcontrib><creatorcontrib>Marson, Alexander</creatorcontrib><creatorcontrib>Chang, Howard Y.</creatorcontrib><creatorcontrib>Bluestone, Jeffrey A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Gool, Frédéric</au><au>Nguyen, Michelle L.T.</au><au>Mumbach, Maxwell R.</au><au>Satpathy, Ansuman T.</au><au>Rosenthal, Wendy L.</au><au>Giacometti, Simone</au><au>Le, Duy T.</au><au>Liu, Weihong</au><au>Brusko, Todd M.</au><au>Anderson, Mark S.</au><au>Rudensky, Alexander Y.</au><au>Marson, Alexander</au><au>Chang, Howard Y.</au><au>Bluestone, Jeffrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2019-02-19</date><risdate>2019</risdate><volume>50</volume><issue>2</issue><spage>362</spage><epage>377.e6</epage><pages>362-377.e6</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells.
[Display omitted]
•IPEX mutation M370I leads to unrestrained Th2 immune response•M370I mutation generates Th2-like Treg cells expressing GATA3 and Th2 cytokines•M370I mutation induces de novo Foxp3 binding sites in the Th2 locus•M370I Treg cells have increased chromatin interaction at the Th2 locus
Naturally occurring FOXP3 mutations provide unique opportunities to leverage clinical observations to increase our understanding of fundamental Treg cell biology. Van Gool et al. identify a mutation in the domain-swap interface of FOXP3 in IPEX patients and demonstrate a direct role for the mutant FOXP3 in reprogramming Treg cells to acquire a Th2-like phenotype, leading to Th2-mediated autoimmunity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30709738</pmid><doi>10.1016/j.immuni.2018.12.016</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-7613 |
ispartof | Immunity (Cambridge, Mass.), 2019-02, Vol.50 (2), p.362-377.e6 |
issn | 1074-7613 1097-4180 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6476426 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Advisors Animals autoimmunity Cell Differentiation - genetics Cell Differentiation - immunology Child Chromatin Cytokines Cytokines - genetics Cytokines - immunology Cytokines - metabolism Deoxyribonucleic acid DNA DNA sequencing Forkhead protein Forkhead Transcription Factors - genetics Forkhead Transcription Factors - immunology Forkhead Transcription Factors - metabolism Foxp3 Foxp3 protein GATA3 Gene Expression Regulation Gene silencing Genetic Diseases, X-Linked - genetics Genetic Diseases, X-Linked - immunology Genetic Diseases, X-Linked - metabolism Genomic analysis Genomics Genotype & phenotype Helper cells Homeostasis Humans Immune response Immune system Immunological tolerance Immunoprecipitation Immunoregulation IPEX Laboratories Lymphocytes Lymphocytes T Male Mice, Inbred C57BL Mice, Knockout Mutation Patients Polyendocrinopathies, Autoimmune - genetics Polyendocrinopathies, Autoimmune - immunology Polyendocrinopathies, Autoimmune - metabolism Proteins regulatory T cells Ribonucleic acid RNA T-Lymphocytes, Regulatory - immunology T-Lymphocytes, Regulatory - metabolism Th2 Cells - immunology Th2 Cells - metabolism Th2-like Treg Transcription factors |
title | A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mutation%20in%20the%20Transcription%20Factor%20Foxp3%20Drives%20T%20Helper%202%20Effector%20Function%20in%20Regulatory%20T%20Cells&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Van%20Gool,%20Fr%C3%A9d%C3%A9ric&rft.date=2019-02-19&rft.volume=50&rft.issue=2&rft.spage=362&rft.epage=377.e6&rft.pages=362-377.e6&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2018.12.016&rft_dat=%3Cproquest_pubme%3E2194759524%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2194759524&rft_id=info:pmid/30709738&rfr_iscdi=true |