Loading…

A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells

Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in...

Full description

Saved in:
Bibliographic Details
Published in:Immunity (Cambridge, Mass.) Mass.), 2019-02, Vol.50 (2), p.362-377.e6
Main Authors: Van Gool, Frédéric, Nguyen, Michelle L.T., Mumbach, Maxwell R., Satpathy, Ansuman T., Rosenthal, Wendy L., Giacometti, Simone, Le, Duy T., Liu, Weihong, Brusko, Todd M., Anderson, Mark S., Rudensky, Alexander Y., Marson, Alexander, Chang, Howard Y., Bluestone, Jeffrey A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553
cites cdi_FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553
container_end_page 377.e6
container_issue 2
container_start_page 362
container_title Immunity (Cambridge, Mass.)
container_volume 50
creator Van Gool, Frédéric
Nguyen, Michelle L.T.
Mumbach, Maxwell R.
Satpathy, Ansuman T.
Rosenthal, Wendy L.
Giacometti, Simone
Le, Duy T.
Liu, Weihong
Brusko, Todd M.
Anderson, Mark S.
Rudensky, Alexander Y.
Marson, Alexander
Chang, Howard Y.
Bluestone, Jeffrey A.
description Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells. [Display omitted] •IPEX mutation M370I leads to unrestrained Th2 immune response•M370I mutation generates Th2-like Treg cells expressing GATA3 and Th2 cytokines•M370I mutation induces de novo Foxp3 binding sites in the Th2 locus•M370I Treg cells have increased chromatin interaction at the Th2 locus Naturally occurring FOXP3 mutations provide unique opportunities to leverage clinical observations to increase our understanding of fundamental Treg cell biology. Van Gool et al. identify a mutation in the domain-swap interface of FOXP3 in IPEX patients and demonstrate a direct role for the mutant FOXP3 in reprogramming Treg cells to acquire a Th2-like phenotype, leading to Th2-mediated autoimmunity.
doi_str_mv 10.1016/j.immuni.2018.12.016
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6476426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761318305648</els_id><sourcerecordid>2194759524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553</originalsourceid><addsrcrecordid>eNp9kc1u3CAUha2qUfPTvkFVIXXTjR3AGMymUjTNNJVSVapmjzC-JIxscMEeNW9fJpOkTRZdXXT4OHA4RfGe4Ipgws-3lRvHxbuKYtJWhFZZfFWcECxFyUiLX-_XgpWCk_q4OE1pizFhjcRviuMai4zV7UlhL9D3ZdazCx45j-ZbQJuofTLRTffiWps5RLQOv6cafYluBwlt0BUME0RE0aW1cAAWbx5dfsLNMuis3mV0BcOQ3hZHVg8J3j3Ms2KzvtysrsrrH1-_rS6uS9MwOpdStlR21pLeYN5L21HO2j6PWvTGMMqMoUCkZDXtBaattoZ1kgrouOVNU58Vnw-209KN0Bvwc9SDmqIbdbxTQTv1fMe7W3UTdoozwRnl2eDTg0EMvxZIsxpdMjmB9hCWpCgRsqkp5yKjH1-g27BEn9NlSjLRyIayTLEDZWJIKYJ9egzBat-j2qpDj2rfoyJUZTEf-_BvkKdDj8X9TQr5N3cOokrGgTfQu5gLUX1w_7_hDxqksQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194759524</pqid></control><display><type>article</type><title>A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Van Gool, Frédéric ; Nguyen, Michelle L.T. ; Mumbach, Maxwell R. ; Satpathy, Ansuman T. ; Rosenthal, Wendy L. ; Giacometti, Simone ; Le, Duy T. ; Liu, Weihong ; Brusko, Todd M. ; Anderson, Mark S. ; Rudensky, Alexander Y. ; Marson, Alexander ; Chang, Howard Y. ; Bluestone, Jeffrey A.</creator><creatorcontrib>Van Gool, Frédéric ; Nguyen, Michelle L.T. ; Mumbach, Maxwell R. ; Satpathy, Ansuman T. ; Rosenthal, Wendy L. ; Giacometti, Simone ; Le, Duy T. ; Liu, Weihong ; Brusko, Todd M. ; Anderson, Mark S. ; Rudensky, Alexander Y. ; Marson, Alexander ; Chang, Howard Y. ; Bluestone, Jeffrey A.</creatorcontrib><description>Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells. [Display omitted] •IPEX mutation M370I leads to unrestrained Th2 immune response•M370I mutation generates Th2-like Treg cells expressing GATA3 and Th2 cytokines•M370I mutation induces de novo Foxp3 binding sites in the Th2 locus•M370I Treg cells have increased chromatin interaction at the Th2 locus Naturally occurring FOXP3 mutations provide unique opportunities to leverage clinical observations to increase our understanding of fundamental Treg cell biology. Van Gool et al. identify a mutation in the domain-swap interface of FOXP3 in IPEX patients and demonstrate a direct role for the mutant FOXP3 in reprogramming Treg cells to acquire a Th2-like phenotype, leading to Th2-mediated autoimmunity.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2018.12.016</identifier><identifier>PMID: 30709738</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Advisors ; Animals ; autoimmunity ; Cell Differentiation - genetics ; Cell Differentiation - immunology ; Child ; Chromatin ; Cytokines ; Cytokines - genetics ; Cytokines - immunology ; Cytokines - metabolism ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Forkhead protein ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - immunology ; Forkhead Transcription Factors - metabolism ; Foxp3 ; Foxp3 protein ; GATA3 ; Gene Expression Regulation ; Gene silencing ; Genetic Diseases, X-Linked - genetics ; Genetic Diseases, X-Linked - immunology ; Genetic Diseases, X-Linked - metabolism ; Genomic analysis ; Genomics ; Genotype &amp; phenotype ; Helper cells ; Homeostasis ; Humans ; Immune response ; Immune system ; Immunological tolerance ; Immunoprecipitation ; Immunoregulation ; IPEX ; Laboratories ; Lymphocytes ; Lymphocytes T ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; Mutation ; Patients ; Polyendocrinopathies, Autoimmune - genetics ; Polyendocrinopathies, Autoimmune - immunology ; Polyendocrinopathies, Autoimmune - metabolism ; Proteins ; regulatory T cells ; Ribonucleic acid ; RNA ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - metabolism ; Th2 Cells - immunology ; Th2 Cells - metabolism ; Th2-like Treg ; Transcription factors</subject><ispartof>Immunity (Cambridge, Mass.), 2019-02, Vol.50 (2), p.362-377.e6</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 19, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553</citedby><cites>FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30709738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Gool, Frédéric</creatorcontrib><creatorcontrib>Nguyen, Michelle L.T.</creatorcontrib><creatorcontrib>Mumbach, Maxwell R.</creatorcontrib><creatorcontrib>Satpathy, Ansuman T.</creatorcontrib><creatorcontrib>Rosenthal, Wendy L.</creatorcontrib><creatorcontrib>Giacometti, Simone</creatorcontrib><creatorcontrib>Le, Duy T.</creatorcontrib><creatorcontrib>Liu, Weihong</creatorcontrib><creatorcontrib>Brusko, Todd M.</creatorcontrib><creatorcontrib>Anderson, Mark S.</creatorcontrib><creatorcontrib>Rudensky, Alexander Y.</creatorcontrib><creatorcontrib>Marson, Alexander</creatorcontrib><creatorcontrib>Chang, Howard Y.</creatorcontrib><creatorcontrib>Bluestone, Jeffrey A.</creatorcontrib><title>A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells. [Display omitted] •IPEX mutation M370I leads to unrestrained Th2 immune response•M370I mutation generates Th2-like Treg cells expressing GATA3 and Th2 cytokines•M370I mutation induces de novo Foxp3 binding sites in the Th2 locus•M370I Treg cells have increased chromatin interaction at the Th2 locus Naturally occurring FOXP3 mutations provide unique opportunities to leverage clinical observations to increase our understanding of fundamental Treg cell biology. Van Gool et al. identify a mutation in the domain-swap interface of FOXP3 in IPEX patients and demonstrate a direct role for the mutant FOXP3 in reprogramming Treg cells to acquire a Th2-like phenotype, leading to Th2-mediated autoimmunity.</description><subject>Advisors</subject><subject>Animals</subject><subject>autoimmunity</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - immunology</subject><subject>Child</subject><subject>Chromatin</subject><subject>Cytokines</subject><subject>Cytokines - genetics</subject><subject>Cytokines - immunology</subject><subject>Cytokines - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Forkhead protein</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - immunology</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Foxp3</subject><subject>Foxp3 protein</subject><subject>GATA3</subject><subject>Gene Expression Regulation</subject><subject>Gene silencing</subject><subject>Genetic Diseases, X-Linked - genetics</subject><subject>Genetic Diseases, X-Linked - immunology</subject><subject>Genetic Diseases, X-Linked - metabolism</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Helper cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunological tolerance</subject><subject>Immunoprecipitation</subject><subject>Immunoregulation</subject><subject>IPEX</subject><subject>Laboratories</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mutation</subject><subject>Patients</subject><subject>Polyendocrinopathies, Autoimmune - genetics</subject><subject>Polyendocrinopathies, Autoimmune - immunology</subject><subject>Polyendocrinopathies, Autoimmune - metabolism</subject><subject>Proteins</subject><subject>regulatory T cells</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>Th2 Cells - immunology</subject><subject>Th2 Cells - metabolism</subject><subject>Th2-like Treg</subject><subject>Transcription factors</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u3CAUha2qUfPTvkFVIXXTjR3AGMymUjTNNJVSVapmjzC-JIxscMEeNW9fJpOkTRZdXXT4OHA4RfGe4Ipgws-3lRvHxbuKYtJWhFZZfFWcECxFyUiLX-_XgpWCk_q4OE1pizFhjcRviuMai4zV7UlhL9D3ZdazCx45j-ZbQJuofTLRTffiWps5RLQOv6cafYluBwlt0BUME0RE0aW1cAAWbx5dfsLNMuis3mV0BcOQ3hZHVg8J3j3Ms2KzvtysrsrrH1-_rS6uS9MwOpdStlR21pLeYN5L21HO2j6PWvTGMMqMoUCkZDXtBaattoZ1kgrouOVNU58Vnw-209KN0Bvwc9SDmqIbdbxTQTv1fMe7W3UTdoozwRnl2eDTg0EMvxZIsxpdMjmB9hCWpCgRsqkp5yKjH1-g27BEn9NlSjLRyIayTLEDZWJIKYJ9egzBat-j2qpDj2rfoyJUZTEf-_BvkKdDj8X9TQr5N3cOokrGgTfQu5gLUX1w_7_hDxqksQQ</recordid><startdate>20190219</startdate><enddate>20190219</enddate><creator>Van Gool, Frédéric</creator><creator>Nguyen, Michelle L.T.</creator><creator>Mumbach, Maxwell R.</creator><creator>Satpathy, Ansuman T.</creator><creator>Rosenthal, Wendy L.</creator><creator>Giacometti, Simone</creator><creator>Le, Duy T.</creator><creator>Liu, Weihong</creator><creator>Brusko, Todd M.</creator><creator>Anderson, Mark S.</creator><creator>Rudensky, Alexander Y.</creator><creator>Marson, Alexander</creator><creator>Chang, Howard Y.</creator><creator>Bluestone, Jeffrey A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190219</creationdate><title>A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells</title><author>Van Gool, Frédéric ; Nguyen, Michelle L.T. ; Mumbach, Maxwell R. ; Satpathy, Ansuman T. ; Rosenthal, Wendy L. ; Giacometti, Simone ; Le, Duy T. ; Liu, Weihong ; Brusko, Todd M. ; Anderson, Mark S. ; Rudensky, Alexander Y. ; Marson, Alexander ; Chang, Howard Y. ; Bluestone, Jeffrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advisors</topic><topic>Animals</topic><topic>autoimmunity</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - immunology</topic><topic>Child</topic><topic>Chromatin</topic><topic>Cytokines</topic><topic>Cytokines - genetics</topic><topic>Cytokines - immunology</topic><topic>Cytokines - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Forkhead protein</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - immunology</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Foxp3</topic><topic>Foxp3 protein</topic><topic>GATA3</topic><topic>Gene Expression Regulation</topic><topic>Gene silencing</topic><topic>Genetic Diseases, X-Linked - genetics</topic><topic>Genetic Diseases, X-Linked - immunology</topic><topic>Genetic Diseases, X-Linked - metabolism</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Helper cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunological tolerance</topic><topic>Immunoprecipitation</topic><topic>Immunoregulation</topic><topic>IPEX</topic><topic>Laboratories</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mutation</topic><topic>Patients</topic><topic>Polyendocrinopathies, Autoimmune - genetics</topic><topic>Polyendocrinopathies, Autoimmune - immunology</topic><topic>Polyendocrinopathies, Autoimmune - metabolism</topic><topic>Proteins</topic><topic>regulatory T cells</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>Th2 Cells - immunology</topic><topic>Th2 Cells - metabolism</topic><topic>Th2-like Treg</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Gool, Frédéric</creatorcontrib><creatorcontrib>Nguyen, Michelle L.T.</creatorcontrib><creatorcontrib>Mumbach, Maxwell R.</creatorcontrib><creatorcontrib>Satpathy, Ansuman T.</creatorcontrib><creatorcontrib>Rosenthal, Wendy L.</creatorcontrib><creatorcontrib>Giacometti, Simone</creatorcontrib><creatorcontrib>Le, Duy T.</creatorcontrib><creatorcontrib>Liu, Weihong</creatorcontrib><creatorcontrib>Brusko, Todd M.</creatorcontrib><creatorcontrib>Anderson, Mark S.</creatorcontrib><creatorcontrib>Rudensky, Alexander Y.</creatorcontrib><creatorcontrib>Marson, Alexander</creatorcontrib><creatorcontrib>Chang, Howard Y.</creatorcontrib><creatorcontrib>Bluestone, Jeffrey A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Gool, Frédéric</au><au>Nguyen, Michelle L.T.</au><au>Mumbach, Maxwell R.</au><au>Satpathy, Ansuman T.</au><au>Rosenthal, Wendy L.</au><au>Giacometti, Simone</au><au>Le, Duy T.</au><au>Liu, Weihong</au><au>Brusko, Todd M.</au><au>Anderson, Mark S.</au><au>Rudensky, Alexander Y.</au><au>Marson, Alexander</au><au>Chang, Howard Y.</au><au>Bluestone, Jeffrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2019-02-19</date><risdate>2019</risdate><volume>50</volume><issue>2</issue><spage>362</spage><epage>377.e6</epage><pages>362-377.e6</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells. [Display omitted] •IPEX mutation M370I leads to unrestrained Th2 immune response•M370I mutation generates Th2-like Treg cells expressing GATA3 and Th2 cytokines•M370I mutation induces de novo Foxp3 binding sites in the Th2 locus•M370I Treg cells have increased chromatin interaction at the Th2 locus Naturally occurring FOXP3 mutations provide unique opportunities to leverage clinical observations to increase our understanding of fundamental Treg cell biology. Van Gool et al. identify a mutation in the domain-swap interface of FOXP3 in IPEX patients and demonstrate a direct role for the mutant FOXP3 in reprogramming Treg cells to acquire a Th2-like phenotype, leading to Th2-mediated autoimmunity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30709738</pmid><doi>10.1016/j.immuni.2018.12.016</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-7613
ispartof Immunity (Cambridge, Mass.), 2019-02, Vol.50 (2), p.362-377.e6
issn 1074-7613
1097-4180
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6476426
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Advisors
Animals
autoimmunity
Cell Differentiation - genetics
Cell Differentiation - immunology
Child
Chromatin
Cytokines
Cytokines - genetics
Cytokines - immunology
Cytokines - metabolism
Deoxyribonucleic acid
DNA
DNA sequencing
Forkhead protein
Forkhead Transcription Factors - genetics
Forkhead Transcription Factors - immunology
Forkhead Transcription Factors - metabolism
Foxp3
Foxp3 protein
GATA3
Gene Expression Regulation
Gene silencing
Genetic Diseases, X-Linked - genetics
Genetic Diseases, X-Linked - immunology
Genetic Diseases, X-Linked - metabolism
Genomic analysis
Genomics
Genotype & phenotype
Helper cells
Homeostasis
Humans
Immune response
Immune system
Immunological tolerance
Immunoprecipitation
Immunoregulation
IPEX
Laboratories
Lymphocytes
Lymphocytes T
Male
Mice, Inbred C57BL
Mice, Knockout
Mutation
Patients
Polyendocrinopathies, Autoimmune - genetics
Polyendocrinopathies, Autoimmune - immunology
Polyendocrinopathies, Autoimmune - metabolism
Proteins
regulatory T cells
Ribonucleic acid
RNA
T-Lymphocytes, Regulatory - immunology
T-Lymphocytes, Regulatory - metabolism
Th2 Cells - immunology
Th2 Cells - metabolism
Th2-like Treg
Transcription factors
title A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mutation%20in%20the%20Transcription%20Factor%20Foxp3%20Drives%20T%20Helper%202%20Effector%20Function%20in%20Regulatory%20T%20Cells&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Van%20Gool,%20Fr%C3%A9d%C3%A9ric&rft.date=2019-02-19&rft.volume=50&rft.issue=2&rft.spage=362&rft.epage=377.e6&rft.pages=362-377.e6&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2018.12.016&rft_dat=%3Cproquest_pubme%3E2194759524%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-99829bff1dc06d9fb2648dfb237dcc424cc2e199432d7028afc4b927eb6f6553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2194759524&rft_id=info:pmid/30709738&rfr_iscdi=true