Loading…

Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes

The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in e...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell 2019-04, Vol.74 (2), p.231-244.e9
Main Authors: Deegan, Tom D., Baxter, Jonathan, Ortiz Bazán, María Ángeles, Yeeles, Joseph T.P., Labib, Karim P.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-88d03fa4d201b468020c699a7675b7e85415f7470675512b8249862fdbfddb773
cites cdi_FETCH-LOGICAL-c496t-88d03fa4d201b468020c699a7675b7e85415f7470675512b8249862fdbfddb773
container_end_page 244.e9
container_issue 2
container_start_page 231
container_title Molecular cell
container_volume 74
creator Deegan, Tom D.
Baxter, Jonathan
Ortiz Bazán, María Ángeles
Yeeles, Joseph T.P.
Labib, Karim P.M.
description The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in eukaryotes are unknown. We studied the convergence of reconstituted yeast replication forks that include all core replisome components and both type I and type II topoisomerases. We found that most converging forks stall at a very late stage, indicating a role for additional factors. We showed that the Pif1 and Rrm3 DNA helicases promote efficient fork convergence and completion of DNA synthesis, even in the absence of type II topoisomerase. Furthermore, Rrm3 and Pif1 are also important for termination of plasmid DNA replication in vivo. These findings identify a eukaryotic pathway for DNA replication termination that is distinct from previously characterized prokaryotic mechanisms. [Display omitted] •In vitro reconstitution of the convergence of two eukaryotic replisomes•Converging replisomes stall at a late stage of DNA replication termination•The budding yeast DNA helicases Pif1 and Rrm3 stimulate fork convergence in vitro•Pif1 and Rrm3 promote fork convergence during DNA replication termination in vivo To study the mechanism of DNA replication termination, Deegan et al. reconstituted the convergence of two replisomes using purified budding yeast proteins. Surprisingly, replisome convergence is inherently inefficient but stimulated by the Pif1 and Rrm3 DNA helicases, which are also important during termination in vivo.
doi_str_mv 10.1016/j.molcel.2019.01.040
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6477153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276519300607</els_id><sourcerecordid>2221031144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-88d03fa4d201b468020c699a7675b7e85415f7470675512b8249862fdbfddb773</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERT_gHyDkI5eEsWPH9gWpWrotUkURlLOVj8nibRIHO1mp_x6vdilwgZPH8juv552HkNcMcgasfLfNB9832OccmMmB5SDgGTljYFQmWCmeH2uuSnlKzmPcAjAhtXlBTgvQEooCzoj97DqWravB9Y_0BnvXVBEj_bpMkw8zXfvwQFd-3GHY4NggbZfgxg398OmSfsFpL5-dH-k9hsGNh9qN9Gp5qMKjnzG-JCdd1Ud8dTwvyLf11f3qJru9u_64urzNGmHKOdO6haKrRJvC1KLUwKEpjalUqWStUEvBZKeEgnSXjNeaC6NL3rV117a1UsUFeX_wnZZ6wLbBcQ5Vb6fghjSJ9ZWzf7-M7rvd-J0thVJMFsng7dEg-B8LxtkOLqb19tWIfomWc86gYEyI_0uZNlLywkCSioO0CT7GgN3TRAzsHqPd2gNGu8dogdmEMbW9-TPNU9Mvbr_jYtrpzmGwsXF7QK0L2My29e7fP_wE-UKwOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189552390</pqid></control><display><type>article</type><title>Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Deegan, Tom D. ; Baxter, Jonathan ; Ortiz Bazán, María Ángeles ; Yeeles, Joseph T.P. ; Labib, Karim P.M.</creator><creatorcontrib>Deegan, Tom D. ; Baxter, Jonathan ; Ortiz Bazán, María Ángeles ; Yeeles, Joseph T.P. ; Labib, Karim P.M.</creatorcontrib><description>The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in eukaryotes are unknown. We studied the convergence of reconstituted yeast replication forks that include all core replisome components and both type I and type II topoisomerases. We found that most converging forks stall at a very late stage, indicating a role for additional factors. We showed that the Pif1 and Rrm3 DNA helicases promote efficient fork convergence and completion of DNA synthesis, even in the absence of type II topoisomerase. Furthermore, Rrm3 and Pif1 are also important for termination of plasmid DNA replication in vivo. These findings identify a eukaryotic pathway for DNA replication termination that is distinct from previously characterized prokaryotic mechanisms. [Display omitted] •In vitro reconstitution of the convergence of two eukaryotic replisomes•Converging replisomes stall at a late stage of DNA replication termination•The budding yeast DNA helicases Pif1 and Rrm3 stimulate fork convergence in vitro•Pif1 and Rrm3 promote fork convergence during DNA replication termination in vivo To study the mechanism of DNA replication termination, Deegan et al. reconstituted the convergence of two replisomes using purified budding yeast proteins. Surprisingly, replisome convergence is inherently inefficient but stimulated by the Pif1 and Rrm3 DNA helicases, which are also important during termination in vivo.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2019.01.040</identifier><identifier>PMID: 30850330</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>chromosome replication ; CMG helicase ; DNA helicases ; DNA Helicases - genetics ; DNA replication ; DNA Replication - genetics ; DNA replication termination ; DNA Topoisomerases - genetics ; Escherichia coli ; Escherichia coli - genetics ; Eukaryota - genetics ; eukaryotic cells ; fork convergence ; Genomic Instability ; Pif1 ; plasmids ; Plasmids - genetics ; replisome ; Rrm3 ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Top2 ; topoisomerase ; yeasts</subject><ispartof>Molecular cell, 2019-04, Vol.74 (2), p.231-244.e9</ispartof><rights>2019 The Authors</rights><rights>Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-88d03fa4d201b468020c699a7675b7e85415f7470675512b8249862fdbfddb773</citedby><cites>FETCH-LOGICAL-c496t-88d03fa4d201b468020c699a7675b7e85415f7470675512b8249862fdbfddb773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30850330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deegan, Tom D.</creatorcontrib><creatorcontrib>Baxter, Jonathan</creatorcontrib><creatorcontrib>Ortiz Bazán, María Ángeles</creatorcontrib><creatorcontrib>Yeeles, Joseph T.P.</creatorcontrib><creatorcontrib>Labib, Karim P.M.</creatorcontrib><title>Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in eukaryotes are unknown. We studied the convergence of reconstituted yeast replication forks that include all core replisome components and both type I and type II topoisomerases. We found that most converging forks stall at a very late stage, indicating a role for additional factors. We showed that the Pif1 and Rrm3 DNA helicases promote efficient fork convergence and completion of DNA synthesis, even in the absence of type II topoisomerase. Furthermore, Rrm3 and Pif1 are also important for termination of plasmid DNA replication in vivo. These findings identify a eukaryotic pathway for DNA replication termination that is distinct from previously characterized prokaryotic mechanisms. [Display omitted] •In vitro reconstitution of the convergence of two eukaryotic replisomes•Converging replisomes stall at a late stage of DNA replication termination•The budding yeast DNA helicases Pif1 and Rrm3 stimulate fork convergence in vitro•Pif1 and Rrm3 promote fork convergence during DNA replication termination in vivo To study the mechanism of DNA replication termination, Deegan et al. reconstituted the convergence of two replisomes using purified budding yeast proteins. Surprisingly, replisome convergence is inherently inefficient but stimulated by the Pif1 and Rrm3 DNA helicases, which are also important during termination in vivo.</description><subject>chromosome replication</subject><subject>CMG helicase</subject><subject>DNA helicases</subject><subject>DNA Helicases - genetics</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>DNA replication termination</subject><subject>DNA Topoisomerases - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Eukaryota - genetics</subject><subject>eukaryotic cells</subject><subject>fork convergence</subject><subject>Genomic Instability</subject><subject>Pif1</subject><subject>plasmids</subject><subject>Plasmids - genetics</subject><subject>replisome</subject><subject>Rrm3</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Top2</subject><subject>topoisomerase</subject><subject>yeasts</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1ERT_gHyDkI5eEsWPH9gWpWrotUkURlLOVj8nibRIHO1mp_x6vdilwgZPH8juv552HkNcMcgasfLfNB9832OccmMmB5SDgGTljYFQmWCmeH2uuSnlKzmPcAjAhtXlBTgvQEooCzoj97DqWravB9Y_0BnvXVBEj_bpMkw8zXfvwQFd-3GHY4NggbZfgxg398OmSfsFpL5-dH-k9hsGNh9qN9Gp5qMKjnzG-JCdd1Ud8dTwvyLf11f3qJru9u_64urzNGmHKOdO6haKrRJvC1KLUwKEpjalUqWStUEvBZKeEgnSXjNeaC6NL3rV117a1UsUFeX_wnZZ6wLbBcQ5Vb6fghjSJ9ZWzf7-M7rvd-J0thVJMFsng7dEg-B8LxtkOLqb19tWIfomWc86gYEyI_0uZNlLywkCSioO0CT7GgN3TRAzsHqPd2gNGu8dogdmEMbW9-TPNU9Mvbr_jYtrpzmGwsXF7QK0L2My29e7fP_wE-UKwOA</recordid><startdate>20190418</startdate><enddate>20190418</enddate><creator>Deegan, Tom D.</creator><creator>Baxter, Jonathan</creator><creator>Ortiz Bazán, María Ángeles</creator><creator>Yeeles, Joseph T.P.</creator><creator>Labib, Karim P.M.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20190418</creationdate><title>Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes</title><author>Deegan, Tom D. ; Baxter, Jonathan ; Ortiz Bazán, María Ángeles ; Yeeles, Joseph T.P. ; Labib, Karim P.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-88d03fa4d201b468020c699a7675b7e85415f7470675512b8249862fdbfddb773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>chromosome replication</topic><topic>CMG helicase</topic><topic>DNA helicases</topic><topic>DNA Helicases - genetics</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>DNA replication termination</topic><topic>DNA Topoisomerases - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Eukaryota - genetics</topic><topic>eukaryotic cells</topic><topic>fork convergence</topic><topic>Genomic Instability</topic><topic>Pif1</topic><topic>plasmids</topic><topic>Plasmids - genetics</topic><topic>replisome</topic><topic>Rrm3</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Top2</topic><topic>topoisomerase</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deegan, Tom D.</creatorcontrib><creatorcontrib>Baxter, Jonathan</creatorcontrib><creatorcontrib>Ortiz Bazán, María Ángeles</creatorcontrib><creatorcontrib>Yeeles, Joseph T.P.</creatorcontrib><creatorcontrib>Labib, Karim P.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deegan, Tom D.</au><au>Baxter, Jonathan</au><au>Ortiz Bazán, María Ángeles</au><au>Yeeles, Joseph T.P.</au><au>Labib, Karim P.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2019-04-18</date><risdate>2019</risdate><volume>74</volume><issue>2</issue><spage>231</spage><epage>244.e9</epage><pages>231-244.e9</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in eukaryotes are unknown. We studied the convergence of reconstituted yeast replication forks that include all core replisome components and both type I and type II topoisomerases. We found that most converging forks stall at a very late stage, indicating a role for additional factors. We showed that the Pif1 and Rrm3 DNA helicases promote efficient fork convergence and completion of DNA synthesis, even in the absence of type II topoisomerase. Furthermore, Rrm3 and Pif1 are also important for termination of plasmid DNA replication in vivo. These findings identify a eukaryotic pathway for DNA replication termination that is distinct from previously characterized prokaryotic mechanisms. [Display omitted] •In vitro reconstitution of the convergence of two eukaryotic replisomes•Converging replisomes stall at a late stage of DNA replication termination•The budding yeast DNA helicases Pif1 and Rrm3 stimulate fork convergence in vitro•Pif1 and Rrm3 promote fork convergence during DNA replication termination in vivo To study the mechanism of DNA replication termination, Deegan et al. reconstituted the convergence of two replisomes using purified budding yeast proteins. Surprisingly, replisome convergence is inherently inefficient but stimulated by the Pif1 and Rrm3 DNA helicases, which are also important during termination in vivo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30850330</pmid><doi>10.1016/j.molcel.2019.01.040</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2019-04, Vol.74 (2), p.231-244.e9
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6477153
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects chromosome replication
CMG helicase
DNA helicases
DNA Helicases - genetics
DNA replication
DNA Replication - genetics
DNA replication termination
DNA Topoisomerases - genetics
Escherichia coli
Escherichia coli - genetics
Eukaryota - genetics
eukaryotic cells
fork convergence
Genomic Instability
Pif1
plasmids
Plasmids - genetics
replisome
Rrm3
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Top2
topoisomerase
yeasts
title Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pif1-Family%20Helicases%20Support%20Fork%20Convergence%20during%20DNA%20Replication%20Termination%20in%20Eukaryotes&rft.jtitle=Molecular%20cell&rft.au=Deegan,%20Tom%20D.&rft.date=2019-04-18&rft.volume=74&rft.issue=2&rft.spage=231&rft.epage=244.e9&rft.pages=231-244.e9&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2019.01.040&rft_dat=%3Cproquest_pubme%3E2221031144%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-88d03fa4d201b468020c699a7675b7e85415f7470675512b8249862fdbfddb773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2189552390&rft_id=info:pmid/30850330&rfr_iscdi=true