Loading…

Phage-Assisted Evolution of Bacillus methanolicus Methanol Dehydrogenase 2

Synthetic methylotrophy, the modification of organisms such as E. coli to grow on methanol, is a longstanding goal of metabolic engineering and synthetic biology. The poor kinetic properties of NAD-dependent methanol dehydrogenase, the first enzyme in most methanol assimilation pathways, limit pathw...

Full description

Saved in:
Bibliographic Details
Published in:ACS synthetic biology 2019-04, Vol.8 (4), p.796-806
Main Authors: Roth, Timothy B, Woolston, Benjamin M, Stephanopoulos, Gregory, Liu, David R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthetic methylotrophy, the modification of organisms such as E. coli to grow on methanol, is a longstanding goal of metabolic engineering and synthetic biology. The poor kinetic properties of NAD-dependent methanol dehydrogenase, the first enzyme in most methanol assimilation pathways, limit pathway flux and present a formidable challenge to synthetic methylotrophy. To address this bottleneck, we used a formaldehyde biosensor to develop a phage-assisted noncontinuous evolution (PANCE) selection for variants of Bacillus methanolicus methanol dehydrogenase 2 (Bm Mdh2). Using this selection, we evolved Mdh2 variants with up to 3.5-fold improved V max. The mutations responsible for enhanced activity map to the predicted active site region homologous to that of type III iron-dependent alcohol dehydrogenases, suggesting a new critical region for future methanol dehydrogenase engineering strategies. Evolved Mdh2 variants enable twice as much 13C-methanol assimilation into central metabolites than previously reported state-of-the-art methanol dehydrogenases. This work provides improved Mdh2 variants and establishes a laboratory evolution approach for metabolic pathways in bacterial cells.
ISSN:2161-5063
2161-5063
DOI:10.1021/acssynbio.8b00481