Loading…
Phage-Assisted Evolution of Bacillus methanolicus Methanol Dehydrogenase 2
Synthetic methylotrophy, the modification of organisms such as E. coli to grow on methanol, is a longstanding goal of metabolic engineering and synthetic biology. The poor kinetic properties of NAD-dependent methanol dehydrogenase, the first enzyme in most methanol assimilation pathways, limit pathw...
Saved in:
Published in: | ACS synthetic biology 2019-04, Vol.8 (4), p.796-806 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Synthetic methylotrophy, the modification of organisms such as E. coli to grow on methanol, is a longstanding goal of metabolic engineering and synthetic biology. The poor kinetic properties of NAD-dependent methanol dehydrogenase, the first enzyme in most methanol assimilation pathways, limit pathway flux and present a formidable challenge to synthetic methylotrophy. To address this bottleneck, we used a formaldehyde biosensor to develop a phage-assisted noncontinuous evolution (PANCE) selection for variants of Bacillus methanolicus methanol dehydrogenase 2 (Bm Mdh2). Using this selection, we evolved Mdh2 variants with up to 3.5-fold improved V max. The mutations responsible for enhanced activity map to the predicted active site region homologous to that of type III iron-dependent alcohol dehydrogenases, suggesting a new critical region for future methanol dehydrogenase engineering strategies. Evolved Mdh2 variants enable twice as much 13C-methanol assimilation into central metabolites than previously reported state-of-the-art methanol dehydrogenases. This work provides improved Mdh2 variants and establishes a laboratory evolution approach for metabolic pathways in bacterial cells. |
---|---|
ISSN: | 2161-5063 2161-5063 |
DOI: | 10.1021/acssynbio.8b00481 |