Loading…

Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy

Recruitment of myeloid-derived suppressor cells (MDSCs) into tumors induces local immunosuppression in carcinomas. Here, we assessed whether SX-682, an orally bioavailable small-molecule inhibitor of CXCR1 and CXCR2, could block tumor MDSC recruitment and enhance T cell activation and antitumor immu...

Full description

Saved in:
Bibliographic Details
Published in:JCI insight 2019-04, Vol.4 (7)
Main Authors: Sun, Lillian, Clavijo, Paul E, Robbins, Yvette, Patel, Priya, Friedman, Jay, Greene, Sarah, Das, Rita, Silvin, Chris, Van Waes, Carter, Horn, Lucas A, Schlom, Jeffrey, Palena, Claudia, Maeda, Dean, Zebala, John, Allen, Clint T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-1a9a669f110ab07f47992388bbf2cc44ce28fa3e864c88b8266c7dbd7b3615903
cites cdi_FETCH-LOGICAL-c451t-1a9a669f110ab07f47992388bbf2cc44ce28fa3e864c88b8266c7dbd7b3615903
container_end_page
container_issue 7
container_start_page
container_title JCI insight
container_volume 4
creator Sun, Lillian
Clavijo, Paul E
Robbins, Yvette
Patel, Priya
Friedman, Jay
Greene, Sarah
Das, Rita
Silvin, Chris
Van Waes, Carter
Horn, Lucas A
Schlom, Jeffrey
Palena, Claudia
Maeda, Dean
Zebala, John
Allen, Clint T
description Recruitment of myeloid-derived suppressor cells (MDSCs) into tumors induces local immunosuppression in carcinomas. Here, we assessed whether SX-682, an orally bioavailable small-molecule inhibitor of CXCR1 and CXCR2, could block tumor MDSC recruitment and enhance T cell activation and antitumor immunity following multiple forms of immunotherapy. CXCR2+ neutrophilic MDSCs (PMN-MDSCs) were the most abundant myeloid cell subset within oral and lung syngeneic carcinomas. PMN-MDSCs demonstrated greater suppression of tumor-infiltrating lymphocyte killing of targets compared with macrophages. SX-682 significantly inhibited trafficking of PMN-MDSCs without altering CXCR2 ligand expression. Trafficking of CXCR1+ macrophages was unaltered, possibly due to coexpression of CSF1R. Reduced PMN-MDSC tumor infiltration correlated with enhanced accumulation of endogenous or adoptively transferred T cells. Accordingly, tumor growth inhibition or the rate of established tumor rejection following programed death-axis (PD-axis) immune checkpoint blockade or adoptive cell transfer of engineered T cells was enhanced in combination with SX-682. Despite CXCR1/2 expression on tumor cells, SX-682 appeared to have little direct antitumor effect on these carcinoma models. These data suggest that tumor-infiltrating CXCR2+ PMN-MDSCs may prevent optimal responses following both PD-axis immune checkpoint blockade and adoptive T cell transfer therapy. Abrogation of PMN-MDSC trafficking with SX-682 enhances T cell-based immunotherapeutic efficacy and may be of benefit to patients with MDSC-infiltrated cancers.
doi_str_mv 10.1172/jci.insight.126853
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6483637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203135798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-1a9a669f110ab07f47992388bbf2cc44ce28fa3e864c88b8266c7dbd7b3615903</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCIVqU_wAHlyCXFr9jOBQlVPCpV4lLOluM4jUviBDup1L8nVUpVTrvamZ19DAD3CC4Q4vhpp-3CumC3ZbdAmImEXIEpJjyNCYfi-iKfgHkIOwgh4hTDRNyCCYEppTghU7BZudJmtrNuG9UHUzU2j3Pj7d7kUejb1psQGh9pU1VR51VRWP195BpXKqdNiDYjZuu6d01XGq_awx24KVQVzPwUZ-Dr7XWz_IjXn--r5cs61jRBXYxUqhhLC4SgyiAvKE9TTITIsgJrTak2WBSKGMGoHqoCM6Z5nuU8IwwlKSQz8Dzqtn1Wm1wbN6xYydbbWvmDbJSV_xFnS7lt9pJRQRjhg8DjScA3P70JnaxtON6jnGn6IDGGBJGEp2Kg4pGqfROCN8V5DILy6IgcHJEnR-ToyND0cLngueXv_-QXX3WMng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203135798</pqid></control><display><type>article</type><title>Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy</title><source>PubMed Central</source><creator>Sun, Lillian ; Clavijo, Paul E ; Robbins, Yvette ; Patel, Priya ; Friedman, Jay ; Greene, Sarah ; Das, Rita ; Silvin, Chris ; Van Waes, Carter ; Horn, Lucas A ; Schlom, Jeffrey ; Palena, Claudia ; Maeda, Dean ; Zebala, John ; Allen, Clint T</creator><creatorcontrib>Sun, Lillian ; Clavijo, Paul E ; Robbins, Yvette ; Patel, Priya ; Friedman, Jay ; Greene, Sarah ; Das, Rita ; Silvin, Chris ; Van Waes, Carter ; Horn, Lucas A ; Schlom, Jeffrey ; Palena, Claudia ; Maeda, Dean ; Zebala, John ; Allen, Clint T</creatorcontrib><description>Recruitment of myeloid-derived suppressor cells (MDSCs) into tumors induces local immunosuppression in carcinomas. Here, we assessed whether SX-682, an orally bioavailable small-molecule inhibitor of CXCR1 and CXCR2, could block tumor MDSC recruitment and enhance T cell activation and antitumor immunity following multiple forms of immunotherapy. CXCR2+ neutrophilic MDSCs (PMN-MDSCs) were the most abundant myeloid cell subset within oral and lung syngeneic carcinomas. PMN-MDSCs demonstrated greater suppression of tumor-infiltrating lymphocyte killing of targets compared with macrophages. SX-682 significantly inhibited trafficking of PMN-MDSCs without altering CXCR2 ligand expression. Trafficking of CXCR1+ macrophages was unaltered, possibly due to coexpression of CSF1R. Reduced PMN-MDSC tumor infiltration correlated with enhanced accumulation of endogenous or adoptively transferred T cells. Accordingly, tumor growth inhibition or the rate of established tumor rejection following programed death-axis (PD-axis) immune checkpoint blockade or adoptive cell transfer of engineered T cells was enhanced in combination with SX-682. Despite CXCR1/2 expression on tumor cells, SX-682 appeared to have little direct antitumor effect on these carcinoma models. These data suggest that tumor-infiltrating CXCR2+ PMN-MDSCs may prevent optimal responses following both PD-axis immune checkpoint blockade and adoptive T cell transfer therapy. Abrogation of PMN-MDSC trafficking with SX-682 enhances T cell-based immunotherapeutic efficacy and may be of benefit to patients with MDSC-infiltrated cancers.</description><identifier>ISSN: 2379-3708</identifier><identifier>EISSN: 2379-3708</identifier><identifier>DOI: 10.1172/jci.insight.126853</identifier><identifier>PMID: 30944253</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Antineoplastic Agents, Immunological - pharmacology ; Antineoplastic Agents, Immunological - therapeutic use ; Carcinoma - immunology ; Carcinoma - pathology ; Carcinoma - therapy ; Cell Line, Tumor - transplantation ; Cell Movement - drug effects ; Cell Movement - immunology ; Combined Modality Therapy - methods ; Disease Models, Animal ; Humans ; Immune Tolerance - drug effects ; Immunotherapy, Adoptive - methods ; Lung Neoplasms - immunology ; Lung Neoplasms - pathology ; Lung Neoplasms - therapy ; Lymphocytes, Tumor-Infiltrating - immunology ; Mice ; Mouth Neoplasms - immunology ; Mouth Neoplasms - pathology ; Mouth Neoplasms - therapy ; Myeloid-Derived Suppressor Cells - drug effects ; Myeloid-Derived Suppressor Cells - immunology ; Myeloid-Derived Suppressor Cells - metabolism ; Neutrophils - immunology ; Neutrophils - metabolism ; Receptors, Interleukin-8A - antagonists &amp; inhibitors ; Receptors, Interleukin-8A - immunology ; Receptors, Interleukin-8A - metabolism ; Receptors, Interleukin-8B - antagonists &amp; inhibitors ; Receptors, Interleukin-8B - immunology ; Receptors, Interleukin-8B - metabolism ; T-Lymphocytes, Cytotoxic - immunology ; T-Lymphocytes, Cytotoxic - transplantation ; Tumor Microenvironment - drug effects ; Tumor Microenvironment - immunology</subject><ispartof>JCI insight, 2019-04, Vol.4 (7)</ispartof><rights>2019 American Society for Clinical Investigation 2019 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-1a9a669f110ab07f47992388bbf2cc44ce28fa3e864c88b8266c7dbd7b3615903</citedby><cites>FETCH-LOGICAL-c451t-1a9a669f110ab07f47992388bbf2cc44ce28fa3e864c88b8266c7dbd7b3615903</cites><orcidid>0000-0002-9304-6846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483637/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483637/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30944253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Lillian</creatorcontrib><creatorcontrib>Clavijo, Paul E</creatorcontrib><creatorcontrib>Robbins, Yvette</creatorcontrib><creatorcontrib>Patel, Priya</creatorcontrib><creatorcontrib>Friedman, Jay</creatorcontrib><creatorcontrib>Greene, Sarah</creatorcontrib><creatorcontrib>Das, Rita</creatorcontrib><creatorcontrib>Silvin, Chris</creatorcontrib><creatorcontrib>Van Waes, Carter</creatorcontrib><creatorcontrib>Horn, Lucas A</creatorcontrib><creatorcontrib>Schlom, Jeffrey</creatorcontrib><creatorcontrib>Palena, Claudia</creatorcontrib><creatorcontrib>Maeda, Dean</creatorcontrib><creatorcontrib>Zebala, John</creatorcontrib><creatorcontrib>Allen, Clint T</creatorcontrib><title>Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy</title><title>JCI insight</title><addtitle>JCI Insight</addtitle><description>Recruitment of myeloid-derived suppressor cells (MDSCs) into tumors induces local immunosuppression in carcinomas. Here, we assessed whether SX-682, an orally bioavailable small-molecule inhibitor of CXCR1 and CXCR2, could block tumor MDSC recruitment and enhance T cell activation and antitumor immunity following multiple forms of immunotherapy. CXCR2+ neutrophilic MDSCs (PMN-MDSCs) were the most abundant myeloid cell subset within oral and lung syngeneic carcinomas. PMN-MDSCs demonstrated greater suppression of tumor-infiltrating lymphocyte killing of targets compared with macrophages. SX-682 significantly inhibited trafficking of PMN-MDSCs without altering CXCR2 ligand expression. Trafficking of CXCR1+ macrophages was unaltered, possibly due to coexpression of CSF1R. Reduced PMN-MDSC tumor infiltration correlated with enhanced accumulation of endogenous or adoptively transferred T cells. Accordingly, tumor growth inhibition or the rate of established tumor rejection following programed death-axis (PD-axis) immune checkpoint blockade or adoptive cell transfer of engineered T cells was enhanced in combination with SX-682. Despite CXCR1/2 expression on tumor cells, SX-682 appeared to have little direct antitumor effect on these carcinoma models. These data suggest that tumor-infiltrating CXCR2+ PMN-MDSCs may prevent optimal responses following both PD-axis immune checkpoint blockade and adoptive T cell transfer therapy. Abrogation of PMN-MDSC trafficking with SX-682 enhances T cell-based immunotherapeutic efficacy and may be of benefit to patients with MDSC-infiltrated cancers.</description><subject>Animals</subject><subject>Antineoplastic Agents, Immunological - pharmacology</subject><subject>Antineoplastic Agents, Immunological - therapeutic use</subject><subject>Carcinoma - immunology</subject><subject>Carcinoma - pathology</subject><subject>Carcinoma - therapy</subject><subject>Cell Line, Tumor - transplantation</subject><subject>Cell Movement - drug effects</subject><subject>Cell Movement - immunology</subject><subject>Combined Modality Therapy - methods</subject><subject>Disease Models, Animal</subject><subject>Humans</subject><subject>Immune Tolerance - drug effects</subject><subject>Immunotherapy, Adoptive - methods</subject><subject>Lung Neoplasms - immunology</subject><subject>Lung Neoplasms - pathology</subject><subject>Lung Neoplasms - therapy</subject><subject>Lymphocytes, Tumor-Infiltrating - immunology</subject><subject>Mice</subject><subject>Mouth Neoplasms - immunology</subject><subject>Mouth Neoplasms - pathology</subject><subject>Mouth Neoplasms - therapy</subject><subject>Myeloid-Derived Suppressor Cells - drug effects</subject><subject>Myeloid-Derived Suppressor Cells - immunology</subject><subject>Myeloid-Derived Suppressor Cells - metabolism</subject><subject>Neutrophils - immunology</subject><subject>Neutrophils - metabolism</subject><subject>Receptors, Interleukin-8A - antagonists &amp; inhibitors</subject><subject>Receptors, Interleukin-8A - immunology</subject><subject>Receptors, Interleukin-8A - metabolism</subject><subject>Receptors, Interleukin-8B - antagonists &amp; inhibitors</subject><subject>Receptors, Interleukin-8B - immunology</subject><subject>Receptors, Interleukin-8B - metabolism</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>T-Lymphocytes, Cytotoxic - transplantation</subject><subject>Tumor Microenvironment - drug effects</subject><subject>Tumor Microenvironment - immunology</subject><issn>2379-3708</issn><issn>2379-3708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUctOwzAQtBCIVqU_wAHlyCXFr9jOBQlVPCpV4lLOluM4jUviBDup1L8nVUpVTrvamZ19DAD3CC4Q4vhpp-3CumC3ZbdAmImEXIEpJjyNCYfi-iKfgHkIOwgh4hTDRNyCCYEppTghU7BZudJmtrNuG9UHUzU2j3Pj7d7kUejb1psQGh9pU1VR51VRWP195BpXKqdNiDYjZuu6d01XGq_awx24KVQVzPwUZ-Dr7XWz_IjXn--r5cs61jRBXYxUqhhLC4SgyiAvKE9TTITIsgJrTak2WBSKGMGoHqoCM6Z5nuU8IwwlKSQz8Dzqtn1Wm1wbN6xYydbbWvmDbJSV_xFnS7lt9pJRQRjhg8DjScA3P70JnaxtON6jnGn6IDGGBJGEp2Kg4pGqfROCN8V5DILy6IgcHJEnR-ToyND0cLngueXv_-QXX3WMng</recordid><startdate>20190404</startdate><enddate>20190404</enddate><creator>Sun, Lillian</creator><creator>Clavijo, Paul E</creator><creator>Robbins, Yvette</creator><creator>Patel, Priya</creator><creator>Friedman, Jay</creator><creator>Greene, Sarah</creator><creator>Das, Rita</creator><creator>Silvin, Chris</creator><creator>Van Waes, Carter</creator><creator>Horn, Lucas A</creator><creator>Schlom, Jeffrey</creator><creator>Palena, Claudia</creator><creator>Maeda, Dean</creator><creator>Zebala, John</creator><creator>Allen, Clint T</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9304-6846</orcidid></search><sort><creationdate>20190404</creationdate><title>Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy</title><author>Sun, Lillian ; Clavijo, Paul E ; Robbins, Yvette ; Patel, Priya ; Friedman, Jay ; Greene, Sarah ; Das, Rita ; Silvin, Chris ; Van Waes, Carter ; Horn, Lucas A ; Schlom, Jeffrey ; Palena, Claudia ; Maeda, Dean ; Zebala, John ; Allen, Clint T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-1a9a669f110ab07f47992388bbf2cc44ce28fa3e864c88b8266c7dbd7b3615903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Immunological - pharmacology</topic><topic>Antineoplastic Agents, Immunological - therapeutic use</topic><topic>Carcinoma - immunology</topic><topic>Carcinoma - pathology</topic><topic>Carcinoma - therapy</topic><topic>Cell Line, Tumor - transplantation</topic><topic>Cell Movement - drug effects</topic><topic>Cell Movement - immunology</topic><topic>Combined Modality Therapy - methods</topic><topic>Disease Models, Animal</topic><topic>Humans</topic><topic>Immune Tolerance - drug effects</topic><topic>Immunotherapy, Adoptive - methods</topic><topic>Lung Neoplasms - immunology</topic><topic>Lung Neoplasms - pathology</topic><topic>Lung Neoplasms - therapy</topic><topic>Lymphocytes, Tumor-Infiltrating - immunology</topic><topic>Mice</topic><topic>Mouth Neoplasms - immunology</topic><topic>Mouth Neoplasms - pathology</topic><topic>Mouth Neoplasms - therapy</topic><topic>Myeloid-Derived Suppressor Cells - drug effects</topic><topic>Myeloid-Derived Suppressor Cells - immunology</topic><topic>Myeloid-Derived Suppressor Cells - metabolism</topic><topic>Neutrophils - immunology</topic><topic>Neutrophils - metabolism</topic><topic>Receptors, Interleukin-8A - antagonists &amp; inhibitors</topic><topic>Receptors, Interleukin-8A - immunology</topic><topic>Receptors, Interleukin-8A - metabolism</topic><topic>Receptors, Interleukin-8B - antagonists &amp; inhibitors</topic><topic>Receptors, Interleukin-8B - immunology</topic><topic>Receptors, Interleukin-8B - metabolism</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>T-Lymphocytes, Cytotoxic - transplantation</topic><topic>Tumor Microenvironment - drug effects</topic><topic>Tumor Microenvironment - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Lillian</creatorcontrib><creatorcontrib>Clavijo, Paul E</creatorcontrib><creatorcontrib>Robbins, Yvette</creatorcontrib><creatorcontrib>Patel, Priya</creatorcontrib><creatorcontrib>Friedman, Jay</creatorcontrib><creatorcontrib>Greene, Sarah</creatorcontrib><creatorcontrib>Das, Rita</creatorcontrib><creatorcontrib>Silvin, Chris</creatorcontrib><creatorcontrib>Van Waes, Carter</creatorcontrib><creatorcontrib>Horn, Lucas A</creatorcontrib><creatorcontrib>Schlom, Jeffrey</creatorcontrib><creatorcontrib>Palena, Claudia</creatorcontrib><creatorcontrib>Maeda, Dean</creatorcontrib><creatorcontrib>Zebala, John</creatorcontrib><creatorcontrib>Allen, Clint T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JCI insight</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Lillian</au><au>Clavijo, Paul E</au><au>Robbins, Yvette</au><au>Patel, Priya</au><au>Friedman, Jay</au><au>Greene, Sarah</au><au>Das, Rita</au><au>Silvin, Chris</au><au>Van Waes, Carter</au><au>Horn, Lucas A</au><au>Schlom, Jeffrey</au><au>Palena, Claudia</au><au>Maeda, Dean</au><au>Zebala, John</au><au>Allen, Clint T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy</atitle><jtitle>JCI insight</jtitle><addtitle>JCI Insight</addtitle><date>2019-04-04</date><risdate>2019</risdate><volume>4</volume><issue>7</issue><issn>2379-3708</issn><eissn>2379-3708</eissn><abstract>Recruitment of myeloid-derived suppressor cells (MDSCs) into tumors induces local immunosuppression in carcinomas. Here, we assessed whether SX-682, an orally bioavailable small-molecule inhibitor of CXCR1 and CXCR2, could block tumor MDSC recruitment and enhance T cell activation and antitumor immunity following multiple forms of immunotherapy. CXCR2+ neutrophilic MDSCs (PMN-MDSCs) were the most abundant myeloid cell subset within oral and lung syngeneic carcinomas. PMN-MDSCs demonstrated greater suppression of tumor-infiltrating lymphocyte killing of targets compared with macrophages. SX-682 significantly inhibited trafficking of PMN-MDSCs without altering CXCR2 ligand expression. Trafficking of CXCR1+ macrophages was unaltered, possibly due to coexpression of CSF1R. Reduced PMN-MDSC tumor infiltration correlated with enhanced accumulation of endogenous or adoptively transferred T cells. Accordingly, tumor growth inhibition or the rate of established tumor rejection following programed death-axis (PD-axis) immune checkpoint blockade or adoptive cell transfer of engineered T cells was enhanced in combination with SX-682. Despite CXCR1/2 expression on tumor cells, SX-682 appeared to have little direct antitumor effect on these carcinoma models. These data suggest that tumor-infiltrating CXCR2+ PMN-MDSCs may prevent optimal responses following both PD-axis immune checkpoint blockade and adoptive T cell transfer therapy. Abrogation of PMN-MDSC trafficking with SX-682 enhances T cell-based immunotherapeutic efficacy and may be of benefit to patients with MDSC-infiltrated cancers.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>30944253</pmid><doi>10.1172/jci.insight.126853</doi><orcidid>https://orcid.org/0000-0002-9304-6846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-3708
ispartof JCI insight, 2019-04, Vol.4 (7)
issn 2379-3708
2379-3708
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6483637
source PubMed Central
subjects Animals
Antineoplastic Agents, Immunological - pharmacology
Antineoplastic Agents, Immunological - therapeutic use
Carcinoma - immunology
Carcinoma - pathology
Carcinoma - therapy
Cell Line, Tumor - transplantation
Cell Movement - drug effects
Cell Movement - immunology
Combined Modality Therapy - methods
Disease Models, Animal
Humans
Immune Tolerance - drug effects
Immunotherapy, Adoptive - methods
Lung Neoplasms - immunology
Lung Neoplasms - pathology
Lung Neoplasms - therapy
Lymphocytes, Tumor-Infiltrating - immunology
Mice
Mouth Neoplasms - immunology
Mouth Neoplasms - pathology
Mouth Neoplasms - therapy
Myeloid-Derived Suppressor Cells - drug effects
Myeloid-Derived Suppressor Cells - immunology
Myeloid-Derived Suppressor Cells - metabolism
Neutrophils - immunology
Neutrophils - metabolism
Receptors, Interleukin-8A - antagonists & inhibitors
Receptors, Interleukin-8A - immunology
Receptors, Interleukin-8A - metabolism
Receptors, Interleukin-8B - antagonists & inhibitors
Receptors, Interleukin-8B - immunology
Receptors, Interleukin-8B - metabolism
T-Lymphocytes, Cytotoxic - immunology
T-Lymphocytes, Cytotoxic - transplantation
Tumor Microenvironment - drug effects
Tumor Microenvironment - immunology
title Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibiting%20myeloid-derived%20suppressor%20cell%20trafficking%20enhances%20T%20cell%20immunotherapy&rft.jtitle=JCI%20insight&rft.au=Sun,%20Lillian&rft.date=2019-04-04&rft.volume=4&rft.issue=7&rft.issn=2379-3708&rft.eissn=2379-3708&rft_id=info:doi/10.1172/jci.insight.126853&rft_dat=%3Cproquest_pubme%3E2203135798%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-1a9a669f110ab07f47992388bbf2cc44ce28fa3e864c88b8266c7dbd7b3615903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203135798&rft_id=info:pmid/30944253&rfr_iscdi=true