Loading…
Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes
Purpose of Review To identify a common effect of health information technologies (HIT) on the management of cardiovascular disease (CVD) risk factors among people with type 2 diabetes (T2D) across randomized control trials (RCT). Recent Findings CVD is the most frequent cause of morbidity and mortal...
Saved in:
Published in: | Current diabetes reports 2019-06, Vol.19 (6), p.28-12, Article 28 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3 |
container_end_page | 12 |
container_issue | 6 |
container_start_page | 28 |
container_title | Current diabetes reports |
container_volume | 19 |
creator | Yoshida, Yilin Boren, Suzanne A. Soares, Jesus Popescu, Mihail Nielson, Stephen D. Koopman, Richelle J. Kennedy, Diana R. Simoes, Eduardo J. |
description | Purpose of Review
To identify a common effect of health information technologies (HIT) on the management of cardiovascular disease (CVD) risk factors among people with type 2 diabetes (T2D) across randomized control trials (RCT).
Recent Findings
CVD is the most frequent cause of morbidity and mortality among patients with diabetes. HIT are effective in reducing HbA1c; however, their effect on cardiovascular risk factor management for patients with T2D has not been evaluated.
Summary
We identified 21 eligible studies (23 estimates) with measurement of SBP, 20 (22 estimates) of DBP, 14 (17 estimates) of HDL, 14 (17 estimates) of LDL, 15 (18 estimates) of triglycerides, and 10 (12 estimates) of weight across databases. We found significant reductions in SBP, DBP, LDL, and TG, and a significant improvement in HDL associated with HIT. As adjuvants to standard diabetic treatment, HIT can be effective tools for improving CVD risk factors among patients with T2D, especially in those whose CVD risk factors are not at goal. |
doi_str_mv | 10.1007/s11892-019-1152-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215762976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3</originalsourceid><addsrcrecordid>eNp1kUuPFCEUhYnROA_9AW4MiRs3pfcCVcDGxPQ8k0k0ZlwTiqa6GatghKox_ntpexwfiSsg9zuHe3IIeYHwBgHk24KoNGsAdYPYsoY_IofYct2AYvrxz7tohGLygByVcgPAqqp9Sg44Agem9CHxp8Pg3UzTQC-8HectvYxDypOdQ4r02rttTGPaBF9ofa9sXod0Z4tbRpvpp1C-0DPr5pQLtVOKG_qxCn2cC_0WqtdJsL2ffXlGngx2LP75_XlMPp-dXq8umqsP55er91eNExLmRiuHKCSulUQ7aA8OoBV9i04Jywcu5ZpzAW0N3Ite2r6VEhBYL7TUzvf8mLzb-94u_eTXrm6S7Whuc5hs_m6SDebvSQxbs0l3phOq0yCqwet7g5y-Lr7MZgrF-XG00aelGMawk5Izpir66h_0Ji051ng7qpUd07KrFO4pl1Mp2Q8PyyCYXYlmX6KpmcyuRMOr5uWfKR4Uv1qrANsDpY7ixuffX__f9QfeZKeM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215762976</pqid></control><display><type>article</type><title>Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes</title><source>Springer Nature</source><creator>Yoshida, Yilin ; Boren, Suzanne A. ; Soares, Jesus ; Popescu, Mihail ; Nielson, Stephen D. ; Koopman, Richelle J. ; Kennedy, Diana R. ; Simoes, Eduardo J.</creator><creatorcontrib>Yoshida, Yilin ; Boren, Suzanne A. ; Soares, Jesus ; Popescu, Mihail ; Nielson, Stephen D. ; Koopman, Richelle J. ; Kennedy, Diana R. ; Simoes, Eduardo J.</creatorcontrib><description>Purpose of Review
To identify a common effect of health information technologies (HIT) on the management of cardiovascular disease (CVD) risk factors among people with type 2 diabetes (T2D) across randomized control trials (RCT).
Recent Findings
CVD is the most frequent cause of morbidity and mortality among patients with diabetes. HIT are effective in reducing HbA1c; however, their effect on cardiovascular risk factor management for patients with T2D has not been evaluated.
Summary
We identified 21 eligible studies (23 estimates) with measurement of SBP, 20 (22 estimates) of DBP, 14 (17 estimates) of HDL, 14 (17 estimates) of LDL, 15 (18 estimates) of triglycerides, and 10 (12 estimates) of weight across databases. We found significant reductions in SBP, DBP, LDL, and TG, and a significant improvement in HDL associated with HIT. As adjuvants to standard diabetic treatment, HIT can be effective tools for improving CVD risk factors among patients with T2D, especially in those whose CVD risk factors are not at goal.</description><identifier>ISSN: 1534-4827</identifier><identifier>EISSN: 1539-0829</identifier><identifier>DOI: 10.1007/s11892-019-1152-3</identifier><identifier>PMID: 31030289</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cardiovascular Diseases ; Diabetes ; Diabetes Mellitus, Type 2 ; Health risk assessment ; Humans ; Macrovascular Complications in Diabetes (VR Aroda and A Getaneh ; Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors) ; Medical Informatics ; Medicine ; Medicine & Public Health ; Risk Factors ; Section Editors ; Topical Collection on Macrovascular Complications in Diabetes ; Triglycerides</subject><ispartof>Current diabetes reports, 2019-06, Vol.19 (6), p.28-12, Article 28</ispartof><rights>The Author(s) 2019</rights><rights>Current Diabetes Reports is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3</citedby><cites>FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31030289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Yilin</creatorcontrib><creatorcontrib>Boren, Suzanne A.</creatorcontrib><creatorcontrib>Soares, Jesus</creatorcontrib><creatorcontrib>Popescu, Mihail</creatorcontrib><creatorcontrib>Nielson, Stephen D.</creatorcontrib><creatorcontrib>Koopman, Richelle J.</creatorcontrib><creatorcontrib>Kennedy, Diana R.</creatorcontrib><creatorcontrib>Simoes, Eduardo J.</creatorcontrib><title>Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes</title><title>Current diabetes reports</title><addtitle>Curr Diab Rep</addtitle><addtitle>Curr Diab Rep</addtitle><description>Purpose of Review
To identify a common effect of health information technologies (HIT) on the management of cardiovascular disease (CVD) risk factors among people with type 2 diabetes (T2D) across randomized control trials (RCT).
Recent Findings
CVD is the most frequent cause of morbidity and mortality among patients with diabetes. HIT are effective in reducing HbA1c; however, their effect on cardiovascular risk factor management for patients with T2D has not been evaluated.
Summary
We identified 21 eligible studies (23 estimates) with measurement of SBP, 20 (22 estimates) of DBP, 14 (17 estimates) of HDL, 14 (17 estimates) of LDL, 15 (18 estimates) of triglycerides, and 10 (12 estimates) of weight across databases. We found significant reductions in SBP, DBP, LDL, and TG, and a significant improvement in HDL associated with HIT. As adjuvants to standard diabetic treatment, HIT can be effective tools for improving CVD risk factors among patients with T2D, especially in those whose CVD risk factors are not at goal.</description><subject>Cardiovascular Diseases</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2</subject><subject>Health risk assessment</subject><subject>Humans</subject><subject>Macrovascular Complications in Diabetes (VR Aroda and A Getaneh</subject><subject>Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)</subject><subject>Medical Informatics</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Risk Factors</subject><subject>Section Editors</subject><subject>Topical Collection on Macrovascular Complications in Diabetes</subject><subject>Triglycerides</subject><issn>1534-4827</issn><issn>1539-0829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUuPFCEUhYnROA_9AW4MiRs3pfcCVcDGxPQ8k0k0ZlwTiqa6GatghKox_ntpexwfiSsg9zuHe3IIeYHwBgHk24KoNGsAdYPYsoY_IofYct2AYvrxz7tohGLygByVcgPAqqp9Sg44Agem9CHxp8Pg3UzTQC-8HectvYxDypOdQ4r02rttTGPaBF9ofa9sXod0Z4tbRpvpp1C-0DPr5pQLtVOKG_qxCn2cC_0WqtdJsL2ffXlGngx2LP75_XlMPp-dXq8umqsP55er91eNExLmRiuHKCSulUQ7aA8OoBV9i04Jywcu5ZpzAW0N3Ite2r6VEhBYL7TUzvf8mLzb-94u_eTXrm6S7Whuc5hs_m6SDebvSQxbs0l3phOq0yCqwet7g5y-Lr7MZgrF-XG00aelGMawk5Izpir66h_0Ji051ng7qpUd07KrFO4pl1Mp2Q8PyyCYXYlmX6KpmcyuRMOr5uWfKR4Uv1qrANsDpY7ixuffX__f9QfeZKeM</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Yoshida, Yilin</creator><creator>Boren, Suzanne A.</creator><creator>Soares, Jesus</creator><creator>Popescu, Mihail</creator><creator>Nielson, Stephen D.</creator><creator>Koopman, Richelle J.</creator><creator>Kennedy, Diana R.</creator><creator>Simoes, Eduardo J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190601</creationdate><title>Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes</title><author>Yoshida, Yilin ; Boren, Suzanne A. ; Soares, Jesus ; Popescu, Mihail ; Nielson, Stephen D. ; Koopman, Richelle J. ; Kennedy, Diana R. ; Simoes, Eduardo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cardiovascular Diseases</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2</topic><topic>Health risk assessment</topic><topic>Humans</topic><topic>Macrovascular Complications in Diabetes (VR Aroda and A Getaneh</topic><topic>Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)</topic><topic>Medical Informatics</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Risk Factors</topic><topic>Section Editors</topic><topic>Topical Collection on Macrovascular Complications in Diabetes</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Yilin</creatorcontrib><creatorcontrib>Boren, Suzanne A.</creatorcontrib><creatorcontrib>Soares, Jesus</creatorcontrib><creatorcontrib>Popescu, Mihail</creatorcontrib><creatorcontrib>Nielson, Stephen D.</creatorcontrib><creatorcontrib>Koopman, Richelle J.</creatorcontrib><creatorcontrib>Kennedy, Diana R.</creatorcontrib><creatorcontrib>Simoes, Eduardo J.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current diabetes reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Yilin</au><au>Boren, Suzanne A.</au><au>Soares, Jesus</au><au>Popescu, Mihail</au><au>Nielson, Stephen D.</au><au>Koopman, Richelle J.</au><au>Kennedy, Diana R.</au><au>Simoes, Eduardo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes</atitle><jtitle>Current diabetes reports</jtitle><stitle>Curr Diab Rep</stitle><addtitle>Curr Diab Rep</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>19</volume><issue>6</issue><spage>28</spage><epage>12</epage><pages>28-12</pages><artnum>28</artnum><issn>1534-4827</issn><eissn>1539-0829</eissn><abstract>Purpose of Review
To identify a common effect of health information technologies (HIT) on the management of cardiovascular disease (CVD) risk factors among people with type 2 diabetes (T2D) across randomized control trials (RCT).
Recent Findings
CVD is the most frequent cause of morbidity and mortality among patients with diabetes. HIT are effective in reducing HbA1c; however, their effect on cardiovascular risk factor management for patients with T2D has not been evaluated.
Summary
We identified 21 eligible studies (23 estimates) with measurement of SBP, 20 (22 estimates) of DBP, 14 (17 estimates) of HDL, 14 (17 estimates) of LDL, 15 (18 estimates) of triglycerides, and 10 (12 estimates) of weight across databases. We found significant reductions in SBP, DBP, LDL, and TG, and a significant improvement in HDL associated with HIT. As adjuvants to standard diabetic treatment, HIT can be effective tools for improving CVD risk factors among patients with T2D, especially in those whose CVD risk factors are not at goal.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31030289</pmid><doi>10.1007/s11892-019-1152-3</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4827 |
ispartof | Current diabetes reports, 2019-06, Vol.19 (6), p.28-12, Article 28 |
issn | 1534-4827 1539-0829 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486904 |
source | Springer Nature |
subjects | Cardiovascular Diseases Diabetes Diabetes Mellitus, Type 2 Health risk assessment Humans Macrovascular Complications in Diabetes (VR Aroda and A Getaneh Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors) Medical Informatics Medicine Medicine & Public Health Risk Factors Section Editors Topical Collection on Macrovascular Complications in Diabetes Triglycerides |
title | Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Health%20Information%20Technologies%20on%20Cardiovascular%20Risk%20Factors%20among%20Patients%20with%20Diabetes&rft.jtitle=Current%20diabetes%20reports&rft.au=Yoshida,%20Yilin&rft.date=2019-06-01&rft.volume=19&rft.issue=6&rft.spage=28&rft.epage=12&rft.pages=28-12&rft.artnum=28&rft.issn=1534-4827&rft.eissn=1539-0829&rft_id=info:doi/10.1007/s11892-019-1152-3&rft_dat=%3Cproquest_pubme%3E2215762976%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215762976&rft_id=info:pmid/31030289&rfr_iscdi=true |