Loading…

Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes

Purpose of Review To identify a common effect of health information technologies (HIT) on the management of cardiovascular disease (CVD) risk factors among people with type 2 diabetes (T2D) across randomized control trials (RCT). Recent Findings CVD is the most frequent cause of morbidity and mortal...

Full description

Saved in:
Bibliographic Details
Published in:Current diabetes reports 2019-06, Vol.19 (6), p.28-12, Article 28
Main Authors: Yoshida, Yilin, Boren, Suzanne A., Soares, Jesus, Popescu, Mihail, Nielson, Stephen D., Koopman, Richelle J., Kennedy, Diana R., Simoes, Eduardo J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3
cites cdi_FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3
container_end_page 12
container_issue 6
container_start_page 28
container_title Current diabetes reports
container_volume 19
creator Yoshida, Yilin
Boren, Suzanne A.
Soares, Jesus
Popescu, Mihail
Nielson, Stephen D.
Koopman, Richelle J.
Kennedy, Diana R.
Simoes, Eduardo J.
description Purpose of Review To identify a common effect of health information technologies (HIT) on the management of cardiovascular disease (CVD) risk factors among people with type 2 diabetes (T2D) across randomized control trials (RCT). Recent Findings CVD is the most frequent cause of morbidity and mortality among patients with diabetes. HIT are effective in reducing HbA1c; however, their effect on cardiovascular risk factor management for patients with T2D has not been evaluated. Summary We identified 21 eligible studies (23 estimates) with measurement of SBP, 20 (22 estimates) of DBP, 14 (17 estimates) of HDL, 14 (17 estimates) of LDL, 15 (18 estimates) of triglycerides, and 10 (12 estimates) of weight across databases. We found significant reductions in SBP, DBP, LDL, and TG, and a significant improvement in HDL associated with HIT. As adjuvants to standard diabetic treatment, HIT can be effective tools for improving CVD risk factors among patients with T2D, especially in those whose CVD risk factors are not at goal.
doi_str_mv 10.1007/s11892-019-1152-3
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215762976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3</originalsourceid><addsrcrecordid>eNp1kUuPFCEUhYnROA_9AW4MiRs3pfcCVcDGxPQ8k0k0ZlwTiqa6GatghKox_ntpexwfiSsg9zuHe3IIeYHwBgHk24KoNGsAdYPYsoY_IofYct2AYvrxz7tohGLygByVcgPAqqp9Sg44Agem9CHxp8Pg3UzTQC-8HectvYxDypOdQ4r02rttTGPaBF9ofa9sXod0Z4tbRpvpp1C-0DPr5pQLtVOKG_qxCn2cC_0WqtdJsL2ffXlGngx2LP75_XlMPp-dXq8umqsP55er91eNExLmRiuHKCSulUQ7aA8OoBV9i04Jywcu5ZpzAW0N3Ite2r6VEhBYL7TUzvf8mLzb-94u_eTXrm6S7Whuc5hs_m6SDebvSQxbs0l3phOq0yCqwet7g5y-Lr7MZgrF-XG00aelGMawk5Izpir66h_0Ji051ng7qpUd07KrFO4pl1Mp2Q8PyyCYXYlmX6KpmcyuRMOr5uWfKR4Uv1qrANsDpY7ixuffX__f9QfeZKeM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215762976</pqid></control><display><type>article</type><title>Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes</title><source>Springer Nature</source><creator>Yoshida, Yilin ; Boren, Suzanne A. ; Soares, Jesus ; Popescu, Mihail ; Nielson, Stephen D. ; Koopman, Richelle J. ; Kennedy, Diana R. ; Simoes, Eduardo J.</creator><creatorcontrib>Yoshida, Yilin ; Boren, Suzanne A. ; Soares, Jesus ; Popescu, Mihail ; Nielson, Stephen D. ; Koopman, Richelle J. ; Kennedy, Diana R. ; Simoes, Eduardo J.</creatorcontrib><description>Purpose of Review To identify a common effect of health information technologies (HIT) on the management of cardiovascular disease (CVD) risk factors among people with type 2 diabetes (T2D) across randomized control trials (RCT). Recent Findings CVD is the most frequent cause of morbidity and mortality among patients with diabetes. HIT are effective in reducing HbA1c; however, their effect on cardiovascular risk factor management for patients with T2D has not been evaluated. Summary We identified 21 eligible studies (23 estimates) with measurement of SBP, 20 (22 estimates) of DBP, 14 (17 estimates) of HDL, 14 (17 estimates) of LDL, 15 (18 estimates) of triglycerides, and 10 (12 estimates) of weight across databases. We found significant reductions in SBP, DBP, LDL, and TG, and a significant improvement in HDL associated with HIT. As adjuvants to standard diabetic treatment, HIT can be effective tools for improving CVD risk factors among patients with T2D, especially in those whose CVD risk factors are not at goal.</description><identifier>ISSN: 1534-4827</identifier><identifier>EISSN: 1539-0829</identifier><identifier>DOI: 10.1007/s11892-019-1152-3</identifier><identifier>PMID: 31030289</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cardiovascular Diseases ; Diabetes ; Diabetes Mellitus, Type 2 ; Health risk assessment ; Humans ; Macrovascular Complications in Diabetes (VR Aroda and A Getaneh ; Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors) ; Medical Informatics ; Medicine ; Medicine &amp; Public Health ; Risk Factors ; Section Editors ; Topical Collection on Macrovascular Complications in Diabetes ; Triglycerides</subject><ispartof>Current diabetes reports, 2019-06, Vol.19 (6), p.28-12, Article 28</ispartof><rights>The Author(s) 2019</rights><rights>Current Diabetes Reports is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3</citedby><cites>FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31030289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Yilin</creatorcontrib><creatorcontrib>Boren, Suzanne A.</creatorcontrib><creatorcontrib>Soares, Jesus</creatorcontrib><creatorcontrib>Popescu, Mihail</creatorcontrib><creatorcontrib>Nielson, Stephen D.</creatorcontrib><creatorcontrib>Koopman, Richelle J.</creatorcontrib><creatorcontrib>Kennedy, Diana R.</creatorcontrib><creatorcontrib>Simoes, Eduardo J.</creatorcontrib><title>Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes</title><title>Current diabetes reports</title><addtitle>Curr Diab Rep</addtitle><addtitle>Curr Diab Rep</addtitle><description>Purpose of Review To identify a common effect of health information technologies (HIT) on the management of cardiovascular disease (CVD) risk factors among people with type 2 diabetes (T2D) across randomized control trials (RCT). Recent Findings CVD is the most frequent cause of morbidity and mortality among patients with diabetes. HIT are effective in reducing HbA1c; however, their effect on cardiovascular risk factor management for patients with T2D has not been evaluated. Summary We identified 21 eligible studies (23 estimates) with measurement of SBP, 20 (22 estimates) of DBP, 14 (17 estimates) of HDL, 14 (17 estimates) of LDL, 15 (18 estimates) of triglycerides, and 10 (12 estimates) of weight across databases. We found significant reductions in SBP, DBP, LDL, and TG, and a significant improvement in HDL associated with HIT. As adjuvants to standard diabetic treatment, HIT can be effective tools for improving CVD risk factors among patients with T2D, especially in those whose CVD risk factors are not at goal.</description><subject>Cardiovascular Diseases</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2</subject><subject>Health risk assessment</subject><subject>Humans</subject><subject>Macrovascular Complications in Diabetes (VR Aroda and A Getaneh</subject><subject>Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)</subject><subject>Medical Informatics</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Risk Factors</subject><subject>Section Editors</subject><subject>Topical Collection on Macrovascular Complications in Diabetes</subject><subject>Triglycerides</subject><issn>1534-4827</issn><issn>1539-0829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUuPFCEUhYnROA_9AW4MiRs3pfcCVcDGxPQ8k0k0ZlwTiqa6GatghKox_ntpexwfiSsg9zuHe3IIeYHwBgHk24KoNGsAdYPYsoY_IofYct2AYvrxz7tohGLygByVcgPAqqp9Sg44Agem9CHxp8Pg3UzTQC-8HectvYxDypOdQ4r02rttTGPaBF9ofa9sXod0Z4tbRpvpp1C-0DPr5pQLtVOKG_qxCn2cC_0WqtdJsL2ffXlGngx2LP75_XlMPp-dXq8umqsP55er91eNExLmRiuHKCSulUQ7aA8OoBV9i04Jywcu5ZpzAW0N3Ite2r6VEhBYL7TUzvf8mLzb-94u_eTXrm6S7Whuc5hs_m6SDebvSQxbs0l3phOq0yCqwet7g5y-Lr7MZgrF-XG00aelGMawk5Izpir66h_0Ji051ng7qpUd07KrFO4pl1Mp2Q8PyyCYXYlmX6KpmcyuRMOr5uWfKR4Uv1qrANsDpY7ixuffX__f9QfeZKeM</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Yoshida, Yilin</creator><creator>Boren, Suzanne A.</creator><creator>Soares, Jesus</creator><creator>Popescu, Mihail</creator><creator>Nielson, Stephen D.</creator><creator>Koopman, Richelle J.</creator><creator>Kennedy, Diana R.</creator><creator>Simoes, Eduardo J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190601</creationdate><title>Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes</title><author>Yoshida, Yilin ; Boren, Suzanne A. ; Soares, Jesus ; Popescu, Mihail ; Nielson, Stephen D. ; Koopman, Richelle J. ; Kennedy, Diana R. ; Simoes, Eduardo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cardiovascular Diseases</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2</topic><topic>Health risk assessment</topic><topic>Humans</topic><topic>Macrovascular Complications in Diabetes (VR Aroda and A Getaneh</topic><topic>Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)</topic><topic>Medical Informatics</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Risk Factors</topic><topic>Section Editors</topic><topic>Topical Collection on Macrovascular Complications in Diabetes</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Yilin</creatorcontrib><creatorcontrib>Boren, Suzanne A.</creatorcontrib><creatorcontrib>Soares, Jesus</creatorcontrib><creatorcontrib>Popescu, Mihail</creatorcontrib><creatorcontrib>Nielson, Stephen D.</creatorcontrib><creatorcontrib>Koopman, Richelle J.</creatorcontrib><creatorcontrib>Kennedy, Diana R.</creatorcontrib><creatorcontrib>Simoes, Eduardo J.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current diabetes reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Yilin</au><au>Boren, Suzanne A.</au><au>Soares, Jesus</au><au>Popescu, Mihail</au><au>Nielson, Stephen D.</au><au>Koopman, Richelle J.</au><au>Kennedy, Diana R.</au><au>Simoes, Eduardo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes</atitle><jtitle>Current diabetes reports</jtitle><stitle>Curr Diab Rep</stitle><addtitle>Curr Diab Rep</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>19</volume><issue>6</issue><spage>28</spage><epage>12</epage><pages>28-12</pages><artnum>28</artnum><issn>1534-4827</issn><eissn>1539-0829</eissn><abstract>Purpose of Review To identify a common effect of health information technologies (HIT) on the management of cardiovascular disease (CVD) risk factors among people with type 2 diabetes (T2D) across randomized control trials (RCT). Recent Findings CVD is the most frequent cause of morbidity and mortality among patients with diabetes. HIT are effective in reducing HbA1c; however, their effect on cardiovascular risk factor management for patients with T2D has not been evaluated. Summary We identified 21 eligible studies (23 estimates) with measurement of SBP, 20 (22 estimates) of DBP, 14 (17 estimates) of HDL, 14 (17 estimates) of LDL, 15 (18 estimates) of triglycerides, and 10 (12 estimates) of weight across databases. We found significant reductions in SBP, DBP, LDL, and TG, and a significant improvement in HDL associated with HIT. As adjuvants to standard diabetic treatment, HIT can be effective tools for improving CVD risk factors among patients with T2D, especially in those whose CVD risk factors are not at goal.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31030289</pmid><doi>10.1007/s11892-019-1152-3</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4827
ispartof Current diabetes reports, 2019-06, Vol.19 (6), p.28-12, Article 28
issn 1534-4827
1539-0829
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486904
source Springer Nature
subjects Cardiovascular Diseases
Diabetes
Diabetes Mellitus, Type 2
Health risk assessment
Humans
Macrovascular Complications in Diabetes (VR Aroda and A Getaneh
Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)
Medical Informatics
Medicine
Medicine & Public Health
Risk Factors
Section Editors
Topical Collection on Macrovascular Complications in Diabetes
Triglycerides
title Effect of Health Information Technologies on Cardiovascular Risk Factors among Patients with Diabetes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Health%20Information%20Technologies%20on%20Cardiovascular%20Risk%20Factors%20among%20Patients%20with%20Diabetes&rft.jtitle=Current%20diabetes%20reports&rft.au=Yoshida,%20Yilin&rft.date=2019-06-01&rft.volume=19&rft.issue=6&rft.spage=28&rft.epage=12&rft.pages=28-12&rft.artnum=28&rft.issn=1534-4827&rft.eissn=1539-0829&rft_id=info:doi/10.1007/s11892-019-1152-3&rft_dat=%3Cproquest_pubme%3E2215762976%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-98c11471d871af9e0c0054b51c84a3f377d33405019b4b7ab5770102b4979ceb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215762976&rft_id=info:pmid/31030289&rfr_iscdi=true