Loading…
Metabolically Active, Fully Hydrolysable Polymersomes
The synthesis and aqueous self‐assembly of a new class of amphiphilic aliphatic polyesters are presented. These AB block polyesters comprise polycaprolactone (hydrophobe) and an alternating polyester from succinic acid and an ether‐substituted epoxide (hydrophile). They self‐assemble into biodegrada...
Saved in:
Published in: | Angewandte Chemie International Edition 2019-03, Vol.58 (14), p.4581-4586 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The synthesis and aqueous self‐assembly of a new class of amphiphilic aliphatic polyesters are presented. These AB block polyesters comprise polycaprolactone (hydrophobe) and an alternating polyester from succinic acid and an ether‐substituted epoxide (hydrophile). They self‐assemble into biodegradable polymersomes capable of entering cells. Their degradation products are bioactive, giving rise to differentiated cellular responses inducing stromal cell proliferation and macrophage apoptosis. Both effects emerge only when the copolymers enter cells as polymersomes and their magnitudes are size dependent.
Class act: The synthesis and aqueous self‐assembly of a new class of amphiphilic aliphatic polyesters are presented. They self‐assemble into biodegradable polymersomes capable of entering cells. Their degradation products are bioactive, giving rise to differentiated cellular responses inducing stromal cell proliferation and macrophage apoptosis. Both effects emerge only when the copolymers enter cells as polymersomes. |
---|---|
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.201814320 |