Loading…

Fast quantitative MRI using controlled saturation magnetization transfer

Purpose This study demonstrates magnetization transfer (MT) effects directly affect relaxometry measurements and develops a framework that allows single‐pool models to be valid in 2‐pool MT systems. Methods A theoretical framework is developed in which a 2‐pool MT system effectively behaves as a sin...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2019-02, Vol.81 (2), p.907-920
Main Authors: A.G. Teixeira, Rui Pedro, Malik, Shaihan J., Hajnal, Joseph V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5092-8025562348d6f3139057c890a67cc1bee049d5349542331a8cf9a5965c234fa33
cites cdi_FETCH-LOGICAL-c5092-8025562348d6f3139057c890a67cc1bee049d5349542331a8cf9a5965c234fa33
container_end_page 920
container_issue 2
container_start_page 907
container_title Magnetic resonance in medicine
container_volume 81
creator A.G. Teixeira, Rui Pedro
Malik, Shaihan J.
Hajnal, Joseph V.
description Purpose This study demonstrates magnetization transfer (MT) effects directly affect relaxometry measurements and develops a framework that allows single‐pool models to be valid in 2‐pool MT systems. Methods A theoretical framework is developed in which a 2‐pool MT system effectively behaves as a single‐pool if the RMS RF magnetic field (B1rms{\text{B}}_{1}^{{{\text{rms}}}) is kept fixed across all measurements. A practical method for achieving controlled saturation magnetization transfer (CSMT) using multiband RF pulses is proposed. Numerical, Phantom, and in vivo validations were performed directly comparing steady state (SS) estimation approaches that under correct single‐pool assumptions would be expected to vary in precision but not accuracy. Results Numerical simulations predict single‐pool estimates obtained from MT model generated data are not consistent for different SS estimation methods, and a systematic underestimation of T2 is expected. Neither effect occurs under the proposed CSMT approach. Both phantom and in vivo experiments corroborate the numerical predictions. Experimental data highlights that even when using the same relaxometry method, different estimates are obtained depending on which combination of flip angles (FAs) and TRs are used if the CSMT approach is not used. Using CSMT, stable measurements of both T1 and T2 are obtained. The measured T1 (T1CSMT)) depends on B1rms{\text{B}}_{1}^{{{\text{rms}}}, which is therefore an important parameter to specify. Conclusion This work demonstrates that conventional single pool relaxometry, which is highly efficient for human studies, results in unreliable parameter estimates in biological tissues because of MT effects. The proposed CSMT framework is shown to allow single‐pool assumptions to be valid, enabling reliable and efficient quantitative imaging to be performed.
doi_str_mv 10.1002/mrm.27442
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113266641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5092-8025562348d6f3139057c890a67cc1bee049d5349542331a8cf9a5965c234fa33</originalsourceid><addsrcrecordid>eNp1kUtLxDAYRYMozvhY-Aek4EYX1bzbbAQRX-AgDLoOMZOOkTbRJFX01xvtOKjgKoTv5OR-XAB2EDxEEOKjLnSHuKIUr4AxYhiXmAm6CsaworAkSNAR2IjxEUIoREXXwYhAzCpI6RhcnquYiudeuWSTSvbFFJPpVdFH6-aF9i4F37ZmVkSV-pDn3hWdmjuT7PtwS0G52JiwBdYa1UazvTg3wd352e3pZXl9c3F1enJdagYFLuv8M-OY0HrGG4KIgKzStYCKV1qje2MgFTNGqGAUE4JUrRuhmOBM5zeNImQTHA_ep_6-MzNtckTVyqdgOxXepFdW_p44-yDn_kVyKjBmNAv2F4Lgn3sTk-xs1KZtlTO-jxIjRDDnnKKM7v1BH30fXF4vU4wIImouMnUwUDr4GINplmEQlJ_9yNyP_Oons7s_0y_J70IycDQAr7Y1b_-b5GQ6GZQfdcGZuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153939869</pqid></control><display><type>article</type><title>Fast quantitative MRI using controlled saturation magnetization transfer</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>A.G. Teixeira, Rui Pedro ; Malik, Shaihan J. ; Hajnal, Joseph V.</creator><creatorcontrib>A.G. Teixeira, Rui Pedro ; Malik, Shaihan J. ; Hajnal, Joseph V.</creatorcontrib><description>Purpose This study demonstrates magnetization transfer (MT) effects directly affect relaxometry measurements and develops a framework that allows single‐pool models to be valid in 2‐pool MT systems. Methods A theoretical framework is developed in which a 2‐pool MT system effectively behaves as a single‐pool if the RMS RF magnetic field (B1rms{\text{B}}_{1}^{{{\text{rms}}}) is kept fixed across all measurements. A practical method for achieving controlled saturation magnetization transfer (CSMT) using multiband RF pulses is proposed. Numerical, Phantom, and in vivo validations were performed directly comparing steady state (SS) estimation approaches that under correct single‐pool assumptions would be expected to vary in precision but not accuracy. Results Numerical simulations predict single‐pool estimates obtained from MT model generated data are not consistent for different SS estimation methods, and a systematic underestimation of T2 is expected. Neither effect occurs under the proposed CSMT approach. Both phantom and in vivo experiments corroborate the numerical predictions. Experimental data highlights that even when using the same relaxometry method, different estimates are obtained depending on which combination of flip angles (FAs) and TRs are used if the CSMT approach is not used. Using CSMT, stable measurements of both T1 and T2 are obtained. The measured T1 (T1CSMT)) depends on B1rms{\text{B}}_{1}^{{{\text{rms}}}, which is therefore an important parameter to specify. Conclusion This work demonstrates that conventional single pool relaxometry, which is highly efficient for human studies, results in unreliable parameter estimates in biological tissues because of MT effects. The proposed CSMT framework is shown to allow single‐pool assumptions to be valid, enabling reliable and efficient quantitative imaging to be performed.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27442</identifier><identifier>PMID: 30257044</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Computer Simulation ; DESPOT ; Estimates ; Full Papers—Imaging Methodology ; Healthy Volunteers ; Humans ; Imaging, Three-Dimensional ; JSR ; Magnetic fields ; Magnetic Resonance Imaging ; Magnetic saturation ; Magnetization ; Magnets ; Mathematical models ; Models, Theoretical ; Monte Carlo Method ; Parameter estimation ; Phantoms, Imaging ; Radio Waves ; relaxometry ; Reproducibility of Results ; Saturation ; steady‐state ; Tissues ; VFA</subject><ispartof>Magnetic resonance in medicine, 2019-02, Vol.81 (2), p.907-920</ispartof><rights>2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine</rights><rights>2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5092-8025562348d6f3139057c890a67cc1bee049d5349542331a8cf9a5965c234fa33</citedby><cites>FETCH-LOGICAL-c5092-8025562348d6f3139057c890a67cc1bee049d5349542331a8cf9a5965c234fa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30257044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>A.G. Teixeira, Rui Pedro</creatorcontrib><creatorcontrib>Malik, Shaihan J.</creatorcontrib><creatorcontrib>Hajnal, Joseph V.</creatorcontrib><title>Fast quantitative MRI using controlled saturation magnetization transfer</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose This study demonstrates magnetization transfer (MT) effects directly affect relaxometry measurements and develops a framework that allows single‐pool models to be valid in 2‐pool MT systems. Methods A theoretical framework is developed in which a 2‐pool MT system effectively behaves as a single‐pool if the RMS RF magnetic field (B1rms{\text{B}}_{1}^{{{\text{rms}}}) is kept fixed across all measurements. A practical method for achieving controlled saturation magnetization transfer (CSMT) using multiband RF pulses is proposed. Numerical, Phantom, and in vivo validations were performed directly comparing steady state (SS) estimation approaches that under correct single‐pool assumptions would be expected to vary in precision but not accuracy. Results Numerical simulations predict single‐pool estimates obtained from MT model generated data are not consistent for different SS estimation methods, and a systematic underestimation of T2 is expected. Neither effect occurs under the proposed CSMT approach. Both phantom and in vivo experiments corroborate the numerical predictions. Experimental data highlights that even when using the same relaxometry method, different estimates are obtained depending on which combination of flip angles (FAs) and TRs are used if the CSMT approach is not used. Using CSMT, stable measurements of both T1 and T2 are obtained. The measured T1 (T1CSMT)) depends on B1rms{\text{B}}_{1}^{{{\text{rms}}}, which is therefore an important parameter to specify. Conclusion This work demonstrates that conventional single pool relaxometry, which is highly efficient for human studies, results in unreliable parameter estimates in biological tissues because of MT effects. The proposed CSMT framework is shown to allow single‐pool assumptions to be valid, enabling reliable and efficient quantitative imaging to be performed.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Computer Simulation</subject><subject>DESPOT</subject><subject>Estimates</subject><subject>Full Papers—Imaging Methodology</subject><subject>Healthy Volunteers</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>JSR</subject><subject>Magnetic fields</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic saturation</subject><subject>Magnetization</subject><subject>Magnets</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Monte Carlo Method</subject><subject>Parameter estimation</subject><subject>Phantoms, Imaging</subject><subject>Radio Waves</subject><subject>relaxometry</subject><subject>Reproducibility of Results</subject><subject>Saturation</subject><subject>steady‐state</subject><subject>Tissues</subject><subject>VFA</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kUtLxDAYRYMozvhY-Aek4EYX1bzbbAQRX-AgDLoOMZOOkTbRJFX01xvtOKjgKoTv5OR-XAB2EDxEEOKjLnSHuKIUr4AxYhiXmAm6CsaworAkSNAR2IjxEUIoREXXwYhAzCpI6RhcnquYiudeuWSTSvbFFJPpVdFH6-aF9i4F37ZmVkSV-pDn3hWdmjuT7PtwS0G52JiwBdYa1UazvTg3wd352e3pZXl9c3F1enJdagYFLuv8M-OY0HrGG4KIgKzStYCKV1qje2MgFTNGqGAUE4JUrRuhmOBM5zeNImQTHA_ep_6-MzNtckTVyqdgOxXepFdW_p44-yDn_kVyKjBmNAv2F4Lgn3sTk-xs1KZtlTO-jxIjRDDnnKKM7v1BH30fXF4vU4wIImouMnUwUDr4GINplmEQlJ_9yNyP_Oons7s_0y_J70IycDQAr7Y1b_-b5GQ6GZQfdcGZuQ</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>A.G. Teixeira, Rui Pedro</creator><creator>Malik, Shaihan J.</creator><creator>Hajnal, Joseph V.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201902</creationdate><title>Fast quantitative MRI using controlled saturation magnetization transfer</title><author>A.G. Teixeira, Rui Pedro ; Malik, Shaihan J. ; Hajnal, Joseph V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5092-8025562348d6f3139057c890a67cc1bee049d5349542331a8cf9a5965c234fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Computer Simulation</topic><topic>DESPOT</topic><topic>Estimates</topic><topic>Full Papers—Imaging Methodology</topic><topic>Healthy Volunteers</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>JSR</topic><topic>Magnetic fields</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic saturation</topic><topic>Magnetization</topic><topic>Magnets</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Monte Carlo Method</topic><topic>Parameter estimation</topic><topic>Phantoms, Imaging</topic><topic>Radio Waves</topic><topic>relaxometry</topic><topic>Reproducibility of Results</topic><topic>Saturation</topic><topic>steady‐state</topic><topic>Tissues</topic><topic>VFA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>A.G. Teixeira, Rui Pedro</creatorcontrib><creatorcontrib>Malik, Shaihan J.</creatorcontrib><creatorcontrib>Hajnal, Joseph V.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A.G. Teixeira, Rui Pedro</au><au>Malik, Shaihan J.</au><au>Hajnal, Joseph V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast quantitative MRI using controlled saturation magnetization transfer</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2019-02</date><risdate>2019</risdate><volume>81</volume><issue>2</issue><spage>907</spage><epage>920</epage><pages>907-920</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose This study demonstrates magnetization transfer (MT) effects directly affect relaxometry measurements and develops a framework that allows single‐pool models to be valid in 2‐pool MT systems. Methods A theoretical framework is developed in which a 2‐pool MT system effectively behaves as a single‐pool if the RMS RF magnetic field (B1rms{\text{B}}_{1}^{{{\text{rms}}}) is kept fixed across all measurements. A practical method for achieving controlled saturation magnetization transfer (CSMT) using multiband RF pulses is proposed. Numerical, Phantom, and in vivo validations were performed directly comparing steady state (SS) estimation approaches that under correct single‐pool assumptions would be expected to vary in precision but not accuracy. Results Numerical simulations predict single‐pool estimates obtained from MT model generated data are not consistent for different SS estimation methods, and a systematic underestimation of T2 is expected. Neither effect occurs under the proposed CSMT approach. Both phantom and in vivo experiments corroborate the numerical predictions. Experimental data highlights that even when using the same relaxometry method, different estimates are obtained depending on which combination of flip angles (FAs) and TRs are used if the CSMT approach is not used. Using CSMT, stable measurements of both T1 and T2 are obtained. The measured T1 (T1CSMT)) depends on B1rms{\text{B}}_{1}^{{{\text{rms}}}, which is therefore an important parameter to specify. Conclusion This work demonstrates that conventional single pool relaxometry, which is highly efficient for human studies, results in unreliable parameter estimates in biological tissues because of MT effects. The proposed CSMT framework is shown to allow single‐pool assumptions to be valid, enabling reliable and efficient quantitative imaging to be performed.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30257044</pmid><doi>10.1002/mrm.27442</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2019-02, Vol.81 (2), p.907-920
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492254
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Brain - diagnostic imaging
Computer Simulation
DESPOT
Estimates
Full Papers—Imaging Methodology
Healthy Volunteers
Humans
Imaging, Three-Dimensional
JSR
Magnetic fields
Magnetic Resonance Imaging
Magnetic saturation
Magnetization
Magnets
Mathematical models
Models, Theoretical
Monte Carlo Method
Parameter estimation
Phantoms, Imaging
Radio Waves
relaxometry
Reproducibility of Results
Saturation
steady‐state
Tissues
VFA
title Fast quantitative MRI using controlled saturation magnetization transfer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20quantitative%20MRI%20using%20controlled%20saturation%20magnetization%20transfer&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=A.G.%20Teixeira,%20Rui%20Pedro&rft.date=2019-02&rft.volume=81&rft.issue=2&rft.spage=907&rft.epage=920&rft.pages=907-920&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27442&rft_dat=%3Cproquest_pubme%3E2113266641%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5092-8025562348d6f3139057c890a67cc1bee049d5349542331a8cf9a5965c234fa33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2153939869&rft_id=info:pmid/30257044&rfr_iscdi=true