Loading…

Hyper-O-GlcNAcylation promotes epithelial-mesenchymal transition in endometrial cancer cells

Diabetic women have a 2-3 fold increased risk of developing endometrial cancer, however, the molecular aspects of this risk are not fully understood. This study investigated the alteration of cellular O-GlcNAcylation of proteins as the potential mechanistic connection between these two conditions. T...

Full description

Saved in:
Bibliographic Details
Published in:Oncotarget 2019-04, Vol.10 (30), p.2899-2910
Main Authors: Jaskiewicz, Nicole Morin, Townson, David H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diabetic women have a 2-3 fold increased risk of developing endometrial cancer, however, the molecular aspects of this risk are not fully understood. This study investigated the alteration of cellular O-GlcNAcylation of proteins as the potential mechanistic connection between these two conditions. The endometrial cancer cell line (Ishikawa) was utilized to study the effect of dysregulation of O-GlcNAcylation on epithelial mesenchymal transition (EMT). Hyper-O-GlcNAcylation (via 1 μM Thiamet-G/ThmG or 25 mM Glucose) enhanced the expression of EMT-associated genes ( and ), and protein expression of the EMT adhesion molecule, N-Cadherin. Reorganization of stress filaments (actin filaments), consistent with EMT, was also noted in ThmG-treated cells. Interestingly, Hypo-O-GlcNAcylation (via 50 μM OSMI-1) also upregulated , inferring that any disruption to O-GlcNAc cycling impacts EMT. However, Hypo-O-GlcNAcylation reduced overall cellular proliferation/migration and the expression of pro-EMT genes ( ). In summary, disruption of O-GlcNAc cycling (i.e., Hyper- or Hypo-O-GlcNAcylation) promoted EMT at both the molecular and cellular levels, but only Hyper-O-GlcNAcylation provoked cellular proliferation/migration, and cytoskeletal reorganization.
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.26884