Loading…

The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility

Sex differences in immunity are well described in the literature and thought to be mainly driven by sex hormones and sex-linked immune response genes. The gastrointestinal tract (GIT) is one of the largest immune organs in the body and contains multiple immune cells in the GIT-associated lymphoid ti...

Full description

Saved in:
Bibliographic Details
Published in:Seminars in immunopathology 2019-03, Vol.41 (2), p.265-275
Main Authors: Vemuri, Ravichandra, Sylvia, Kristyn E., Klein, Sabra L., Forster, Samuel C., Plebanski, Magdalena, Eri, Raj, Flanagan, Katie L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sex differences in immunity are well described in the literature and thought to be mainly driven by sex hormones and sex-linked immune response genes. The gastrointestinal tract (GIT) is one of the largest immune organs in the body and contains multiple immune cells in the GIT-associated lymphoid tissue, Peyer’s patches and elsewhere, which together have profound effects on local and systemic inflammation. The GIT is colonised with microbial communities composed of bacteria, fungi and viruses, collectively known as the GIT microbiota. The GIT microbiota drives multiple interactions locally with immune cells that regulate the homeostatic environment and systemically in diverse tissues. It is becoming evident that the microbiota differs between the sexes, both in animal models and in humans, and these sex differences often lead to sex-dependent changes in local GIT inflammation, systemic immunity and susceptibility to a range of inflammatory diseases. The sexually dimorphic microbiome has been termed the ‘microgenderome’. Herein, we review the evidence for the microgenderome and contemplate the role it plays in driving sex differences in immunity and disease susceptibility. We further consider the impact that biological sex might play in the response to treatments aimed at manipulating the GIT microbiota, such as prebiotics, live biotherapeutics, (probiotics, synbiotics and bacteriotherapies) and faecal microbial transplant. These alternative therapies hold potential in the treatment of both psychological (e.g., anxiety, depression) and physiological (e.g., irritable bowel disease) disorders differentially affecting males and females.
ISSN:1863-2297
1863-2300
1863-2300
DOI:10.1007/s00281-018-0716-7