Loading…
CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax
Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of resear...
Saved in:
Published in: | Plant physiology (Bethesda) 2019-05, Vol.180 (1), p.39-55 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-5b7dfbf6b07eb92fb0a02d4949a92d147d90e0ee12f2a01c73bfb02bbcf398c83 |
---|---|
cites | |
container_end_page | 55 |
container_issue | 1 |
container_start_page | 39 |
container_title | Plant physiology (Bethesda) |
container_volume | 180 |
creator | Vasudevan, Ravendran Gale, Grant A.R. Schiavon, Alejandra A. Puzorjov, Anton Malin, John Gillespie, Michael D. Vavitsas, Konstantinos Zulkower, Valentin Wang, Baojun Howe, Christopher J. Lea-Smith, David J. McCormick, Alistair J. |
description | Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications. By building on the assembly library and syntax of the Plant Golden Gate MoClo kit, we have developed a versatile system called CyanoGate that unites cyanobacteria with plant and algal systems. Here, we describe the generation of a suite of parts and acceptor vectors for making (1) marked/unmarked knock-outs or integrations using an integrative acceptor vector, and (2) transient multigene expression and repression systems using known and previously undescribed replicative vectors. We tested and compared the CyanoGate system in the established model cyanobacterium Synechocystis sp. PCC 6803 and the more recently described fast-growing strain Synechococcus elongatus UTEX 2973. The UTEX 2973 fast-growth phenotype was only evident under specific growth conditions; however, UTEX 2973 accumulated high levels of proteins with strong native or synthetic promoters. The system is publicly available and can be readily expanded to accommodate other standardized MoClo parts to accelerate the development of reliable synthetic biology tools for the cyanobacterial community. |
doi_str_mv | 10.1104/pp.18.01401 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26705353</jstor_id><sourcerecordid>26705353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-5b7dfbf6b07eb92fb0a02d4949a92d147d90e0ee12f2a01c73bfb02bbcf398c83</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRbKyePOtZkNSZ_Uh2L4IErULBi56X3c1GU9JszKZC_73R1qKnGXgf3hkeQs4RZojAb7puhnIGyAEPSIKC0ZQKLg9JAjDuIKWakJMYlwCADPkxmTCQqHLJEpIUG9OGuRn8KTmqTBP92W5OyevD_UvxmC6e50_F3SJ1PFNDKmxeVrbKLOTeKlpZMEBLrrgyipbI81KBB--RVtQAupzZkaHWuoop6SSbktttb7e2K1863w69aXTX1yvTb3Qwtf6ftPW7fgufOhOAIOlYcLUr6MPH2sdBr-rofNOY1od11BRlLlChwBG93qKuDzH2vtqfQdDf8nTXaZT6R95IX_79bM_-2hqBiy2wjEPo9znNchBMMPYFCJBy3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187519151</pqid></control><display><type>article</type><title>CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax</title><source>Oxford Journals Online</source><creator>Vasudevan, Ravendran ; Gale, Grant A.R. ; Schiavon, Alejandra A. ; Puzorjov, Anton ; Malin, John ; Gillespie, Michael D. ; Vavitsas, Konstantinos ; Zulkower, Valentin ; Wang, Baojun ; Howe, Christopher J. ; Lea-Smith, David J. ; McCormick, Alistair J.</creator><creatorcontrib>Vasudevan, Ravendran ; Gale, Grant A.R. ; Schiavon, Alejandra A. ; Puzorjov, Anton ; Malin, John ; Gillespie, Michael D. ; Vavitsas, Konstantinos ; Zulkower, Valentin ; Wang, Baojun ; Howe, Christopher J. ; Lea-Smith, David J. ; McCormick, Alistair J.</creatorcontrib><description>Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications. By building on the assembly library and syntax of the Plant Golden Gate MoClo kit, we have developed a versatile system called CyanoGate that unites cyanobacteria with plant and algal systems. Here, we describe the generation of a suite of parts and acceptor vectors for making (1) marked/unmarked knock-outs or integrations using an integrative acceptor vector, and (2) transient multigene expression and repression systems using known and previously undescribed replicative vectors. We tested and compared the CyanoGate system in the established model cyanobacterium Synechocystis sp. PCC 6803 and the more recently described fast-growing strain Synechococcus elongatus UTEX 2973. The UTEX 2973 fast-growth phenotype was only evident under specific growth conditions; however, UTEX 2973 accumulated high levels of proteins with strong native or synthetic promoters. The system is publicly available and can be readily expanded to accommodate other standardized MoClo parts to accelerate the development of reliable synthetic biology tools for the cyanobacterial community.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.18.01401</identifier><identifier>PMID: 30819783</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists (ASPB)</publisher><subject>Breakthrough Technologies ; Cloning, Molecular ; Clustered Regularly Interspaced Short Palindromic Repeats - genetics ; Cyanobacteria - genetics ; Gene Knock-In Techniques ; Gene Knockout Techniques ; Genetic Engineering - methods ; Genetic Vectors ; Promoter Regions, Genetic ; Synechocystis - genetics ; Synthetic Biology - methods</subject><ispartof>Plant physiology (Bethesda), 2019-05, Vol.180 (1), p.39-55</ispartof><rights>2019 American Society of Plant Biologists</rights><rights>2019 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2019 American Society of Plant Biologists. All Rights Reserved. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-5b7dfbf6b07eb92fb0a02d4949a92d147d90e0ee12f2a01c73bfb02bbcf398c83</citedby><orcidid>0000-0002-6828-1000 ; 0000-0003-2463-406X ; 0000-0001-9195-1116 ; 0000-0002-6975-8640 ; 0000-0002-4858-8937 ; 0000-0002-7255-872X ; 0000-0002-1991-8693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30819783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasudevan, Ravendran</creatorcontrib><creatorcontrib>Gale, Grant A.R.</creatorcontrib><creatorcontrib>Schiavon, Alejandra A.</creatorcontrib><creatorcontrib>Puzorjov, Anton</creatorcontrib><creatorcontrib>Malin, John</creatorcontrib><creatorcontrib>Gillespie, Michael D.</creatorcontrib><creatorcontrib>Vavitsas, Konstantinos</creatorcontrib><creatorcontrib>Zulkower, Valentin</creatorcontrib><creatorcontrib>Wang, Baojun</creatorcontrib><creatorcontrib>Howe, Christopher J.</creatorcontrib><creatorcontrib>Lea-Smith, David J.</creatorcontrib><creatorcontrib>McCormick, Alistair J.</creatorcontrib><title>CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications. By building on the assembly library and syntax of the Plant Golden Gate MoClo kit, we have developed a versatile system called CyanoGate that unites cyanobacteria with plant and algal systems. Here, we describe the generation of a suite of parts and acceptor vectors for making (1) marked/unmarked knock-outs or integrations using an integrative acceptor vector, and (2) transient multigene expression and repression systems using known and previously undescribed replicative vectors. We tested and compared the CyanoGate system in the established model cyanobacterium Synechocystis sp. PCC 6803 and the more recently described fast-growing strain Synechococcus elongatus UTEX 2973. The UTEX 2973 fast-growth phenotype was only evident under specific growth conditions; however, UTEX 2973 accumulated high levels of proteins with strong native or synthetic promoters. The system is publicly available and can be readily expanded to accommodate other standardized MoClo parts to accelerate the development of reliable synthetic biology tools for the cyanobacterial community.</description><subject>Breakthrough Technologies</subject><subject>Cloning, Molecular</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</subject><subject>Cyanobacteria - genetics</subject><subject>Gene Knock-In Techniques</subject><subject>Gene Knockout Techniques</subject><subject>Genetic Engineering - methods</subject><subject>Genetic Vectors</subject><subject>Promoter Regions, Genetic</subject><subject>Synechocystis - genetics</subject><subject>Synthetic Biology - methods</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhhdRbKyePOtZkNSZ_Uh2L4IErULBi56X3c1GU9JszKZC_73R1qKnGXgf3hkeQs4RZojAb7puhnIGyAEPSIKC0ZQKLg9JAjDuIKWakJMYlwCADPkxmTCQqHLJEpIUG9OGuRn8KTmqTBP92W5OyevD_UvxmC6e50_F3SJ1PFNDKmxeVrbKLOTeKlpZMEBLrrgyipbI81KBB--RVtQAupzZkaHWuoop6SSbktttb7e2K1863w69aXTX1yvTb3Qwtf6ftPW7fgufOhOAIOlYcLUr6MPH2sdBr-rofNOY1od11BRlLlChwBG93qKuDzH2vtqfQdDf8nTXaZT6R95IX_79bM_-2hqBiy2wjEPo9znNchBMMPYFCJBy3w</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Vasudevan, Ravendran</creator><creator>Gale, Grant A.R.</creator><creator>Schiavon, Alejandra A.</creator><creator>Puzorjov, Anton</creator><creator>Malin, John</creator><creator>Gillespie, Michael D.</creator><creator>Vavitsas, Konstantinos</creator><creator>Zulkower, Valentin</creator><creator>Wang, Baojun</creator><creator>Howe, Christopher J.</creator><creator>Lea-Smith, David J.</creator><creator>McCormick, Alistair J.</creator><general>American Society of Plant Biologists (ASPB)</general><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6828-1000</orcidid><orcidid>https://orcid.org/0000-0003-2463-406X</orcidid><orcidid>https://orcid.org/0000-0001-9195-1116</orcidid><orcidid>https://orcid.org/0000-0002-6975-8640</orcidid><orcidid>https://orcid.org/0000-0002-4858-8937</orcidid><orcidid>https://orcid.org/0000-0002-7255-872X</orcidid><orcidid>https://orcid.org/0000-0002-1991-8693</orcidid></search><sort><creationdate>20190501</creationdate><title>CyanoGate</title><author>Vasudevan, Ravendran ; Gale, Grant A.R. ; Schiavon, Alejandra A. ; Puzorjov, Anton ; Malin, John ; Gillespie, Michael D. ; Vavitsas, Konstantinos ; Zulkower, Valentin ; Wang, Baojun ; Howe, Christopher J. ; Lea-Smith, David J. ; McCormick, Alistair J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-5b7dfbf6b07eb92fb0a02d4949a92d147d90e0ee12f2a01c73bfb02bbcf398c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Breakthrough Technologies</topic><topic>Cloning, Molecular</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</topic><topic>Cyanobacteria - genetics</topic><topic>Gene Knock-In Techniques</topic><topic>Gene Knockout Techniques</topic><topic>Genetic Engineering - methods</topic><topic>Genetic Vectors</topic><topic>Promoter Regions, Genetic</topic><topic>Synechocystis - genetics</topic><topic>Synthetic Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasudevan, Ravendran</creatorcontrib><creatorcontrib>Gale, Grant A.R.</creatorcontrib><creatorcontrib>Schiavon, Alejandra A.</creatorcontrib><creatorcontrib>Puzorjov, Anton</creatorcontrib><creatorcontrib>Malin, John</creatorcontrib><creatorcontrib>Gillespie, Michael D.</creatorcontrib><creatorcontrib>Vavitsas, Konstantinos</creatorcontrib><creatorcontrib>Zulkower, Valentin</creatorcontrib><creatorcontrib>Wang, Baojun</creatorcontrib><creatorcontrib>Howe, Christopher J.</creatorcontrib><creatorcontrib>Lea-Smith, David J.</creatorcontrib><creatorcontrib>McCormick, Alistair J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasudevan, Ravendran</au><au>Gale, Grant A.R.</au><au>Schiavon, Alejandra A.</au><au>Puzorjov, Anton</au><au>Malin, John</au><au>Gillespie, Michael D.</au><au>Vavitsas, Konstantinos</au><au>Zulkower, Valentin</au><au>Wang, Baojun</au><au>Howe, Christopher J.</au><au>Lea-Smith, David J.</au><au>McCormick, Alistair J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>180</volume><issue>1</issue><spage>39</spage><epage>55</epage><pages>39-55</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications. By building on the assembly library and syntax of the Plant Golden Gate MoClo kit, we have developed a versatile system called CyanoGate that unites cyanobacteria with plant and algal systems. Here, we describe the generation of a suite of parts and acceptor vectors for making (1) marked/unmarked knock-outs or integrations using an integrative acceptor vector, and (2) transient multigene expression and repression systems using known and previously undescribed replicative vectors. We tested and compared the CyanoGate system in the established model cyanobacterium Synechocystis sp. PCC 6803 and the more recently described fast-growing strain Synechococcus elongatus UTEX 2973. The UTEX 2973 fast-growth phenotype was only evident under specific growth conditions; however, UTEX 2973 accumulated high levels of proteins with strong native or synthetic promoters. The system is publicly available and can be readily expanded to accommodate other standardized MoClo parts to accelerate the development of reliable synthetic biology tools for the cyanobacterial community.</abstract><cop>United States</cop><pub>American Society of Plant Biologists (ASPB)</pub><pmid>30819783</pmid><doi>10.1104/pp.18.01401</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6828-1000</orcidid><orcidid>https://orcid.org/0000-0003-2463-406X</orcidid><orcidid>https://orcid.org/0000-0001-9195-1116</orcidid><orcidid>https://orcid.org/0000-0002-6975-8640</orcidid><orcidid>https://orcid.org/0000-0002-4858-8937</orcidid><orcidid>https://orcid.org/0000-0002-7255-872X</orcidid><orcidid>https://orcid.org/0000-0002-1991-8693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2019-05, Vol.180 (1), p.39-55 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501082 |
source | Oxford Journals Online |
subjects | Breakthrough Technologies Cloning, Molecular Clustered Regularly Interspaced Short Palindromic Repeats - genetics Cyanobacteria - genetics Gene Knock-In Techniques Gene Knockout Techniques Genetic Engineering - methods Genetic Vectors Promoter Regions, Genetic Synechocystis - genetics Synthetic Biology - methods |
title | CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CyanoGate:%20A%20Modular%20Cloning%20Suite%20for%20Engineering%20Cyanobacteria%20Based%20on%20the%20Plant%20MoClo%20Syntax&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Vasudevan,%20Ravendran&rft.date=2019-05-01&rft.volume=180&rft.issue=1&rft.spage=39&rft.epage=55&rft.pages=39-55&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.18.01401&rft_dat=%3Cjstor_pubme%3E26705353%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-5b7dfbf6b07eb92fb0a02d4949a92d147d90e0ee12f2a01c73bfb02bbcf398c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187519151&rft_id=info:pmid/30819783&rft_jstor_id=26705353&rfr_iscdi=true |