Loading…

CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax

Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of resear...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2019-05, Vol.180 (1), p.39-55
Main Authors: Vasudevan, Ravendran, Gale, Grant A.R., Schiavon, Alejandra A., Puzorjov, Anton, Malin, John, Gillespie, Michael D., Vavitsas, Konstantinos, Zulkower, Valentin, Wang, Baojun, Howe, Christopher J., Lea-Smith, David J., McCormick, Alistair J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-5b7dfbf6b07eb92fb0a02d4949a92d147d90e0ee12f2a01c73bfb02bbcf398c83
cites
container_end_page 55
container_issue 1
container_start_page 39
container_title Plant physiology (Bethesda)
container_volume 180
creator Vasudevan, Ravendran
Gale, Grant A.R.
Schiavon, Alejandra A.
Puzorjov, Anton
Malin, John
Gillespie, Michael D.
Vavitsas, Konstantinos
Zulkower, Valentin
Wang, Baojun
Howe, Christopher J.
Lea-Smith, David J.
McCormick, Alistair J.
description Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications. By building on the assembly library and syntax of the Plant Golden Gate MoClo kit, we have developed a versatile system called CyanoGate that unites cyanobacteria with plant and algal systems. Here, we describe the generation of a suite of parts and acceptor vectors for making (1) marked/unmarked knock-outs or integrations using an integrative acceptor vector, and (2) transient multigene expression and repression systems using known and previously undescribed replicative vectors. We tested and compared the CyanoGate system in the established model cyanobacterium Synechocystis sp. PCC 6803 and the more recently described fast-growing strain Synechococcus elongatus UTEX 2973. The UTEX 2973 fast-growth phenotype was only evident under specific growth conditions; however, UTEX 2973 accumulated high levels of proteins with strong native or synthetic promoters. The system is publicly available and can be readily expanded to accommodate other standardized MoClo parts to accelerate the development of reliable synthetic biology tools for the cyanobacterial community.
doi_str_mv 10.1104/pp.18.01401
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26705353</jstor_id><sourcerecordid>26705353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-5b7dfbf6b07eb92fb0a02d4949a92d147d90e0ee12f2a01c73bfb02bbcf398c83</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRbKyePOtZkNSZ_Uh2L4IErULBi56X3c1GU9JszKZC_73R1qKnGXgf3hkeQs4RZojAb7puhnIGyAEPSIKC0ZQKLg9JAjDuIKWakJMYlwCADPkxmTCQqHLJEpIUG9OGuRn8KTmqTBP92W5OyevD_UvxmC6e50_F3SJ1PFNDKmxeVrbKLOTeKlpZMEBLrrgyipbI81KBB--RVtQAupzZkaHWuoop6SSbktttb7e2K1863w69aXTX1yvTb3Qwtf6ftPW7fgufOhOAIOlYcLUr6MPH2sdBr-rofNOY1od11BRlLlChwBG93qKuDzH2vtqfQdDf8nTXaZT6R95IX_79bM_-2hqBiy2wjEPo9znNchBMMPYFCJBy3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187519151</pqid></control><display><type>article</type><title>CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax</title><source>Oxford Journals Online</source><creator>Vasudevan, Ravendran ; Gale, Grant A.R. ; Schiavon, Alejandra A. ; Puzorjov, Anton ; Malin, John ; Gillespie, Michael D. ; Vavitsas, Konstantinos ; Zulkower, Valentin ; Wang, Baojun ; Howe, Christopher J. ; Lea-Smith, David J. ; McCormick, Alistair J.</creator><creatorcontrib>Vasudevan, Ravendran ; Gale, Grant A.R. ; Schiavon, Alejandra A. ; Puzorjov, Anton ; Malin, John ; Gillespie, Michael D. ; Vavitsas, Konstantinos ; Zulkower, Valentin ; Wang, Baojun ; Howe, Christopher J. ; Lea-Smith, David J. ; McCormick, Alistair J.</creatorcontrib><description>Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications. By building on the assembly library and syntax of the Plant Golden Gate MoClo kit, we have developed a versatile system called CyanoGate that unites cyanobacteria with plant and algal systems. Here, we describe the generation of a suite of parts and acceptor vectors for making (1) marked/unmarked knock-outs or integrations using an integrative acceptor vector, and (2) transient multigene expression and repression systems using known and previously undescribed replicative vectors. We tested and compared the CyanoGate system in the established model cyanobacterium Synechocystis sp. PCC 6803 and the more recently described fast-growing strain Synechococcus elongatus UTEX 2973. The UTEX 2973 fast-growth phenotype was only evident under specific growth conditions; however, UTEX 2973 accumulated high levels of proteins with strong native or synthetic promoters. The system is publicly available and can be readily expanded to accommodate other standardized MoClo parts to accelerate the development of reliable synthetic biology tools for the cyanobacterial community.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.18.01401</identifier><identifier>PMID: 30819783</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists (ASPB)</publisher><subject>Breakthrough Technologies ; Cloning, Molecular ; Clustered Regularly Interspaced Short Palindromic Repeats - genetics ; Cyanobacteria - genetics ; Gene Knock-In Techniques ; Gene Knockout Techniques ; Genetic Engineering - methods ; Genetic Vectors ; Promoter Regions, Genetic ; Synechocystis - genetics ; Synthetic Biology - methods</subject><ispartof>Plant physiology (Bethesda), 2019-05, Vol.180 (1), p.39-55</ispartof><rights>2019 American Society of Plant Biologists</rights><rights>2019 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2019 American Society of Plant Biologists. All Rights Reserved. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-5b7dfbf6b07eb92fb0a02d4949a92d147d90e0ee12f2a01c73bfb02bbcf398c83</citedby><orcidid>0000-0002-6828-1000 ; 0000-0003-2463-406X ; 0000-0001-9195-1116 ; 0000-0002-6975-8640 ; 0000-0002-4858-8937 ; 0000-0002-7255-872X ; 0000-0002-1991-8693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30819783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasudevan, Ravendran</creatorcontrib><creatorcontrib>Gale, Grant A.R.</creatorcontrib><creatorcontrib>Schiavon, Alejandra A.</creatorcontrib><creatorcontrib>Puzorjov, Anton</creatorcontrib><creatorcontrib>Malin, John</creatorcontrib><creatorcontrib>Gillespie, Michael D.</creatorcontrib><creatorcontrib>Vavitsas, Konstantinos</creatorcontrib><creatorcontrib>Zulkower, Valentin</creatorcontrib><creatorcontrib>Wang, Baojun</creatorcontrib><creatorcontrib>Howe, Christopher J.</creatorcontrib><creatorcontrib>Lea-Smith, David J.</creatorcontrib><creatorcontrib>McCormick, Alistair J.</creatorcontrib><title>CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications. By building on the assembly library and syntax of the Plant Golden Gate MoClo kit, we have developed a versatile system called CyanoGate that unites cyanobacteria with plant and algal systems. Here, we describe the generation of a suite of parts and acceptor vectors for making (1) marked/unmarked knock-outs or integrations using an integrative acceptor vector, and (2) transient multigene expression and repression systems using known and previously undescribed replicative vectors. We tested and compared the CyanoGate system in the established model cyanobacterium Synechocystis sp. PCC 6803 and the more recently described fast-growing strain Synechococcus elongatus UTEX 2973. The UTEX 2973 fast-growth phenotype was only evident under specific growth conditions; however, UTEX 2973 accumulated high levels of proteins with strong native or synthetic promoters. The system is publicly available and can be readily expanded to accommodate other standardized MoClo parts to accelerate the development of reliable synthetic biology tools for the cyanobacterial community.</description><subject>Breakthrough Technologies</subject><subject>Cloning, Molecular</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</subject><subject>Cyanobacteria - genetics</subject><subject>Gene Knock-In Techniques</subject><subject>Gene Knockout Techniques</subject><subject>Genetic Engineering - methods</subject><subject>Genetic Vectors</subject><subject>Promoter Regions, Genetic</subject><subject>Synechocystis - genetics</subject><subject>Synthetic Biology - methods</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhhdRbKyePOtZkNSZ_Uh2L4IErULBi56X3c1GU9JszKZC_73R1qKnGXgf3hkeQs4RZojAb7puhnIGyAEPSIKC0ZQKLg9JAjDuIKWakJMYlwCADPkxmTCQqHLJEpIUG9OGuRn8KTmqTBP92W5OyevD_UvxmC6e50_F3SJ1PFNDKmxeVrbKLOTeKlpZMEBLrrgyipbI81KBB--RVtQAupzZkaHWuoop6SSbktttb7e2K1863w69aXTX1yvTb3Qwtf6ftPW7fgufOhOAIOlYcLUr6MPH2sdBr-rofNOY1od11BRlLlChwBG93qKuDzH2vtqfQdDf8nTXaZT6R95IX_79bM_-2hqBiy2wjEPo9znNchBMMPYFCJBy3w</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Vasudevan, Ravendran</creator><creator>Gale, Grant A.R.</creator><creator>Schiavon, Alejandra A.</creator><creator>Puzorjov, Anton</creator><creator>Malin, John</creator><creator>Gillespie, Michael D.</creator><creator>Vavitsas, Konstantinos</creator><creator>Zulkower, Valentin</creator><creator>Wang, Baojun</creator><creator>Howe, Christopher J.</creator><creator>Lea-Smith, David J.</creator><creator>McCormick, Alistair J.</creator><general>American Society of Plant Biologists (ASPB)</general><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6828-1000</orcidid><orcidid>https://orcid.org/0000-0003-2463-406X</orcidid><orcidid>https://orcid.org/0000-0001-9195-1116</orcidid><orcidid>https://orcid.org/0000-0002-6975-8640</orcidid><orcidid>https://orcid.org/0000-0002-4858-8937</orcidid><orcidid>https://orcid.org/0000-0002-7255-872X</orcidid><orcidid>https://orcid.org/0000-0002-1991-8693</orcidid></search><sort><creationdate>20190501</creationdate><title>CyanoGate</title><author>Vasudevan, Ravendran ; Gale, Grant A.R. ; Schiavon, Alejandra A. ; Puzorjov, Anton ; Malin, John ; Gillespie, Michael D. ; Vavitsas, Konstantinos ; Zulkower, Valentin ; Wang, Baojun ; Howe, Christopher J. ; Lea-Smith, David J. ; McCormick, Alistair J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-5b7dfbf6b07eb92fb0a02d4949a92d147d90e0ee12f2a01c73bfb02bbcf398c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Breakthrough Technologies</topic><topic>Cloning, Molecular</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</topic><topic>Cyanobacteria - genetics</topic><topic>Gene Knock-In Techniques</topic><topic>Gene Knockout Techniques</topic><topic>Genetic Engineering - methods</topic><topic>Genetic Vectors</topic><topic>Promoter Regions, Genetic</topic><topic>Synechocystis - genetics</topic><topic>Synthetic Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasudevan, Ravendran</creatorcontrib><creatorcontrib>Gale, Grant A.R.</creatorcontrib><creatorcontrib>Schiavon, Alejandra A.</creatorcontrib><creatorcontrib>Puzorjov, Anton</creatorcontrib><creatorcontrib>Malin, John</creatorcontrib><creatorcontrib>Gillespie, Michael D.</creatorcontrib><creatorcontrib>Vavitsas, Konstantinos</creatorcontrib><creatorcontrib>Zulkower, Valentin</creatorcontrib><creatorcontrib>Wang, Baojun</creatorcontrib><creatorcontrib>Howe, Christopher J.</creatorcontrib><creatorcontrib>Lea-Smith, David J.</creatorcontrib><creatorcontrib>McCormick, Alistair J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasudevan, Ravendran</au><au>Gale, Grant A.R.</au><au>Schiavon, Alejandra A.</au><au>Puzorjov, Anton</au><au>Malin, John</au><au>Gillespie, Michael D.</au><au>Vavitsas, Konstantinos</au><au>Zulkower, Valentin</au><au>Wang, Baojun</au><au>Howe, Christopher J.</au><au>Lea-Smith, David J.</au><au>McCormick, Alistair J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>180</volume><issue>1</issue><spage>39</spage><epage>55</epage><pages>39-55</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications. By building on the assembly library and syntax of the Plant Golden Gate MoClo kit, we have developed a versatile system called CyanoGate that unites cyanobacteria with plant and algal systems. Here, we describe the generation of a suite of parts and acceptor vectors for making (1) marked/unmarked knock-outs or integrations using an integrative acceptor vector, and (2) transient multigene expression and repression systems using known and previously undescribed replicative vectors. We tested and compared the CyanoGate system in the established model cyanobacterium Synechocystis sp. PCC 6803 and the more recently described fast-growing strain Synechococcus elongatus UTEX 2973. The UTEX 2973 fast-growth phenotype was only evident under specific growth conditions; however, UTEX 2973 accumulated high levels of proteins with strong native or synthetic promoters. The system is publicly available and can be readily expanded to accommodate other standardized MoClo parts to accelerate the development of reliable synthetic biology tools for the cyanobacterial community.</abstract><cop>United States</cop><pub>American Society of Plant Biologists (ASPB)</pub><pmid>30819783</pmid><doi>10.1104/pp.18.01401</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6828-1000</orcidid><orcidid>https://orcid.org/0000-0003-2463-406X</orcidid><orcidid>https://orcid.org/0000-0001-9195-1116</orcidid><orcidid>https://orcid.org/0000-0002-6975-8640</orcidid><orcidid>https://orcid.org/0000-0002-4858-8937</orcidid><orcidid>https://orcid.org/0000-0002-7255-872X</orcidid><orcidid>https://orcid.org/0000-0002-1991-8693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2019-05, Vol.180 (1), p.39-55
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6501082
source Oxford Journals Online
subjects Breakthrough Technologies
Cloning, Molecular
Clustered Regularly Interspaced Short Palindromic Repeats - genetics
Cyanobacteria - genetics
Gene Knock-In Techniques
Gene Knockout Techniques
Genetic Engineering - methods
Genetic Vectors
Promoter Regions, Genetic
Synechocystis - genetics
Synthetic Biology - methods
title CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CyanoGate:%20A%20Modular%20Cloning%20Suite%20for%20Engineering%20Cyanobacteria%20Based%20on%20the%20Plant%20MoClo%20Syntax&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Vasudevan,%20Ravendran&rft.date=2019-05-01&rft.volume=180&rft.issue=1&rft.spage=39&rft.epage=55&rft.pages=39-55&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.18.01401&rft_dat=%3Cjstor_pubme%3E26705353%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-5b7dfbf6b07eb92fb0a02d4949a92d147d90e0ee12f2a01c73bfb02bbcf398c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187519151&rft_id=info:pmid/30819783&rft_jstor_id=26705353&rfr_iscdi=true