Loading…

Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D

Common fragile sites (CFSs) are genomic regions that display gaps and breaks in human metaphase chromosomes under replication stress and are often deleted in cancer cells. We studied an ∼300-bp subregion (Flex1) of human CFS FRA16D in yeast and found that it recapitulates characteristics of CFS frag...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2019-04, Vol.27 (4), p.1151-1164.e5
Main Authors: Kaushal, Simran, Wollmuth, Charles E., Das, Kohal, Hile, Suzanne E., Regan, Samantha B., Barnes, Ryan P., Haouzi, Alice, Lee, Soo Mi, House, Nealia C.M., Guyumdzhyan, Michael, Eckert, Kristin A., Freudenreich, Catherine H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-fafd2489b29f7838aa5cbc0627996e67fcbc102ed6340cf0418874d84d0ac0e73
cites cdi_FETCH-LOGICAL-c463t-fafd2489b29f7838aa5cbc0627996e67fcbc102ed6340cf0418874d84d0ac0e73
container_end_page 1164.e5
container_issue 4
container_start_page 1151
container_title Cell reports (Cambridge)
container_volume 27
creator Kaushal, Simran
Wollmuth, Charles E.
Das, Kohal
Hile, Suzanne E.
Regan, Samantha B.
Barnes, Ryan P.
Haouzi, Alice
Lee, Soo Mi
House, Nealia C.M.
Guyumdzhyan, Michael
Eckert, Kristin A.
Freudenreich, Catherine H.
description Common fragile sites (CFSs) are genomic regions that display gaps and breaks in human metaphase chromosomes under replication stress and are often deleted in cancer cells. We studied an ∼300-bp subregion (Flex1) of human CFS FRA16D in yeast and found that it recapitulates characteristics of CFS fragility in human cells. Flex1 fragility is dependent on the ability of a variable-length AT repeat to form a cruciform structure that stalls replication. Fragility at Flex1 is initiated by structure-specific endonuclease Mus81-Mms4 acting together with the Slx1-4/Rad1-10 complex, whereas Yen1 protects Flex1 against breakage. Sae2 is required for healing of Flex1 after breakage. Our study shows that breakage within a CFS can be initiated by nuclease cleavage at forks stalled at DNA structures. Furthermore, our results suggest that CFSs are not just prone to breakage but also are impaired in their ability to heal, and this deleterious combination accounts for their fragility. [Display omitted] •FRA16D subregion Flex1 causes fragility in an AT length-dependent manner•Longer AT repeats form a cruciform and stall replication by human Pol δ•Flex1 is targeted by the Mus81 nuclease, whereas Yen1 protects against breakage•Fragility at Flex1 is due to a combination of increased breaks and impaired healing Kaushal et al. found that a subregion of fragile site FRA16D forms an abnormal DNA structure that stalls DNA polymerase, resulting in DNA breakage and difficulty healing. They identify nucleases that cleave this structure to cause the DNA breaks and postulate that difficulty healing makes these sites prone to rearrangements.
doi_str_mv 10.1016/j.celrep.2019.03.103
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6506224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124719304504</els_id><sourcerecordid>2215017307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-fafd2489b29f7838aa5cbc0627996e67fcbc102ed6340cf0418874d84d0ac0e73</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCIVqX_ACEfyyHL88c6yQVpKSytVBWpW86W13neeknixU6KkPjxONqyLZf6Ynv83oznDSFvGcwYMPVhO7PYRtzNOLB6BiKj4gU55pyxgnFZvnxyPiKnKW0hLwWM1fI1ORKZpGICjsmfFf4csbdITd_Q69G2aBLSm4z6iB32Q6IuRPopovlhNvuyCzSt7zc0OGroaoijHcaIxTLEboLPFrfve3og_uWHO9_TZTQb3yJd-QHp8mbB1Oc35JUzbcLTh_2EfF9-uT2_KK6-fb08X1wVVioxFM64hsuqXvPalZWojJnbtQXFy7pWqEqXbww4NkpIsA4kq6pSNpVswFjAUpyQj3ve3bjusLHZVTSt3kXfmfhbB-P1_y-9v9ObcK_VPKtwmQnOHghiyK7SoDufcgKt6TGMSedZz4GVAiYtuS-1MaQU0R1kGOgpO73V--z0lJ0GkVGR2949_eKh6V9Sjx4wD-reY9TJ-mm-Tc7JDroJ_nmFv-eRrQk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215017307</pqid></control><display><type>article</type><title>Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Kaushal, Simran ; Wollmuth, Charles E. ; Das, Kohal ; Hile, Suzanne E. ; Regan, Samantha B. ; Barnes, Ryan P. ; Haouzi, Alice ; Lee, Soo Mi ; House, Nealia C.M. ; Guyumdzhyan, Michael ; Eckert, Kristin A. ; Freudenreich, Catherine H.</creator><creatorcontrib>Kaushal, Simran ; Wollmuth, Charles E. ; Das, Kohal ; Hile, Suzanne E. ; Regan, Samantha B. ; Barnes, Ryan P. ; Haouzi, Alice ; Lee, Soo Mi ; House, Nealia C.M. ; Guyumdzhyan, Michael ; Eckert, Kristin A. ; Freudenreich, Catherine H.</creatorcontrib><description>Common fragile sites (CFSs) are genomic regions that display gaps and breaks in human metaphase chromosomes under replication stress and are often deleted in cancer cells. We studied an ∼300-bp subregion (Flex1) of human CFS FRA16D in yeast and found that it recapitulates characteristics of CFS fragility in human cells. Flex1 fragility is dependent on the ability of a variable-length AT repeat to form a cruciform structure that stalls replication. Fragility at Flex1 is initiated by structure-specific endonuclease Mus81-Mms4 acting together with the Slx1-4/Rad1-10 complex, whereas Yen1 protects Flex1 against breakage. Sae2 is required for healing of Flex1 after breakage. Our study shows that breakage within a CFS can be initiated by nuclease cleavage at forks stalled at DNA structures. Furthermore, our results suggest that CFSs are not just prone to breakage but also are impaired in their ability to heal, and this deleterious combination accounts for their fragility. [Display omitted] •FRA16D subregion Flex1 causes fragility in an AT length-dependent manner•Longer AT repeats form a cruciform and stall replication by human Pol δ•Flex1 is targeted by the Mus81 nuclease, whereas Yen1 protects against breakage•Fragility at Flex1 is due to a combination of increased breaks and impaired healing Kaushal et al. found that a subregion of fragile site FRA16D forms an abnormal DNA structure that stalls DNA polymerase, resulting in DNA breakage and difficulty healing. They identify nucleases that cleave this structure to cause the DNA breaks and postulate that difficulty healing makes these sites prone to rearrangements.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2019.03.103</identifier><identifier>PMID: 31018130</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AT repeat ; CFS ; Chromosome Breakage ; Chromosome Fragile Sites - genetics ; Chromosomes, Human, Pair 16 - genetics ; common fragile site ; cruciform structure ; CtIP ; DNA Polymerase III - genetics ; DNA Polymerase III - metabolism ; DNA Replication ; Endonucleases - metabolism ; FRA16D ; Humans ; Mus81 endonuclease ; replication fork stall ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sae2 ; Slx4 complex ; Tandem Repeat Sequences</subject><ispartof>Cell reports (Cambridge), 2019-04, Vol.27 (4), p.1151-1164.e5</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-fafd2489b29f7838aa5cbc0627996e67fcbc102ed6340cf0418874d84d0ac0e73</citedby><cites>FETCH-LOGICAL-c463t-fafd2489b29f7838aa5cbc0627996e67fcbc102ed6340cf0418874d84d0ac0e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31018130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaushal, Simran</creatorcontrib><creatorcontrib>Wollmuth, Charles E.</creatorcontrib><creatorcontrib>Das, Kohal</creatorcontrib><creatorcontrib>Hile, Suzanne E.</creatorcontrib><creatorcontrib>Regan, Samantha B.</creatorcontrib><creatorcontrib>Barnes, Ryan P.</creatorcontrib><creatorcontrib>Haouzi, Alice</creatorcontrib><creatorcontrib>Lee, Soo Mi</creatorcontrib><creatorcontrib>House, Nealia C.M.</creatorcontrib><creatorcontrib>Guyumdzhyan, Michael</creatorcontrib><creatorcontrib>Eckert, Kristin A.</creatorcontrib><creatorcontrib>Freudenreich, Catherine H.</creatorcontrib><title>Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Common fragile sites (CFSs) are genomic regions that display gaps and breaks in human metaphase chromosomes under replication stress and are often deleted in cancer cells. We studied an ∼300-bp subregion (Flex1) of human CFS FRA16D in yeast and found that it recapitulates characteristics of CFS fragility in human cells. Flex1 fragility is dependent on the ability of a variable-length AT repeat to form a cruciform structure that stalls replication. Fragility at Flex1 is initiated by structure-specific endonuclease Mus81-Mms4 acting together with the Slx1-4/Rad1-10 complex, whereas Yen1 protects Flex1 against breakage. Sae2 is required for healing of Flex1 after breakage. Our study shows that breakage within a CFS can be initiated by nuclease cleavage at forks stalled at DNA structures. Furthermore, our results suggest that CFSs are not just prone to breakage but also are impaired in their ability to heal, and this deleterious combination accounts for their fragility. [Display omitted] •FRA16D subregion Flex1 causes fragility in an AT length-dependent manner•Longer AT repeats form a cruciform and stall replication by human Pol δ•Flex1 is targeted by the Mus81 nuclease, whereas Yen1 protects against breakage•Fragility at Flex1 is due to a combination of increased breaks and impaired healing Kaushal et al. found that a subregion of fragile site FRA16D forms an abnormal DNA structure that stalls DNA polymerase, resulting in DNA breakage and difficulty healing. They identify nucleases that cleave this structure to cause the DNA breaks and postulate that difficulty healing makes these sites prone to rearrangements.</description><subject>AT repeat</subject><subject>CFS</subject><subject>Chromosome Breakage</subject><subject>Chromosome Fragile Sites - genetics</subject><subject>Chromosomes, Human, Pair 16 - genetics</subject><subject>common fragile site</subject><subject>cruciform structure</subject><subject>CtIP</subject><subject>DNA Polymerase III - genetics</subject><subject>DNA Polymerase III - metabolism</subject><subject>DNA Replication</subject><subject>Endonucleases - metabolism</subject><subject>FRA16D</subject><subject>Humans</subject><subject>Mus81 endonuclease</subject><subject>replication fork stall</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sae2</subject><subject>Slx4 complex</subject><subject>Tandem Repeat Sequences</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAUtBCIVqX_ACEfyyHL88c6yQVpKSytVBWpW86W13neeknixU6KkPjxONqyLZf6Ynv83oznDSFvGcwYMPVhO7PYRtzNOLB6BiKj4gU55pyxgnFZvnxyPiKnKW0hLwWM1fI1ORKZpGICjsmfFf4csbdITd_Q69G2aBLSm4z6iB32Q6IuRPopovlhNvuyCzSt7zc0OGroaoijHcaIxTLEboLPFrfve3og_uWHO9_TZTQb3yJd-QHp8mbB1Oc35JUzbcLTh_2EfF9-uT2_KK6-fb08X1wVVioxFM64hsuqXvPalZWojJnbtQXFy7pWqEqXbww4NkpIsA4kq6pSNpVswFjAUpyQj3ve3bjusLHZVTSt3kXfmfhbB-P1_y-9v9ObcK_VPKtwmQnOHghiyK7SoDufcgKt6TGMSedZz4GVAiYtuS-1MaQU0R1kGOgpO73V--z0lJ0GkVGR2949_eKh6V9Sjx4wD-reY9TJ-mm-Tc7JDroJ_nmFv-eRrQk</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Kaushal, Simran</creator><creator>Wollmuth, Charles E.</creator><creator>Das, Kohal</creator><creator>Hile, Suzanne E.</creator><creator>Regan, Samantha B.</creator><creator>Barnes, Ryan P.</creator><creator>Haouzi, Alice</creator><creator>Lee, Soo Mi</creator><creator>House, Nealia C.M.</creator><creator>Guyumdzhyan, Michael</creator><creator>Eckert, Kristin A.</creator><creator>Freudenreich, Catherine H.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190423</creationdate><title>Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D</title><author>Kaushal, Simran ; Wollmuth, Charles E. ; Das, Kohal ; Hile, Suzanne E. ; Regan, Samantha B. ; Barnes, Ryan P. ; Haouzi, Alice ; Lee, Soo Mi ; House, Nealia C.M. ; Guyumdzhyan, Michael ; Eckert, Kristin A. ; Freudenreich, Catherine H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-fafd2489b29f7838aa5cbc0627996e67fcbc102ed6340cf0418874d84d0ac0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AT repeat</topic><topic>CFS</topic><topic>Chromosome Breakage</topic><topic>Chromosome Fragile Sites - genetics</topic><topic>Chromosomes, Human, Pair 16 - genetics</topic><topic>common fragile site</topic><topic>cruciform structure</topic><topic>CtIP</topic><topic>DNA Polymerase III - genetics</topic><topic>DNA Polymerase III - metabolism</topic><topic>DNA Replication</topic><topic>Endonucleases - metabolism</topic><topic>FRA16D</topic><topic>Humans</topic><topic>Mus81 endonuclease</topic><topic>replication fork stall</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sae2</topic><topic>Slx4 complex</topic><topic>Tandem Repeat Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaushal, Simran</creatorcontrib><creatorcontrib>Wollmuth, Charles E.</creatorcontrib><creatorcontrib>Das, Kohal</creatorcontrib><creatorcontrib>Hile, Suzanne E.</creatorcontrib><creatorcontrib>Regan, Samantha B.</creatorcontrib><creatorcontrib>Barnes, Ryan P.</creatorcontrib><creatorcontrib>Haouzi, Alice</creatorcontrib><creatorcontrib>Lee, Soo Mi</creatorcontrib><creatorcontrib>House, Nealia C.M.</creatorcontrib><creatorcontrib>Guyumdzhyan, Michael</creatorcontrib><creatorcontrib>Eckert, Kristin A.</creatorcontrib><creatorcontrib>Freudenreich, Catherine H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaushal, Simran</au><au>Wollmuth, Charles E.</au><au>Das, Kohal</au><au>Hile, Suzanne E.</au><au>Regan, Samantha B.</au><au>Barnes, Ryan P.</au><au>Haouzi, Alice</au><au>Lee, Soo Mi</au><au>House, Nealia C.M.</au><au>Guyumdzhyan, Michael</au><au>Eckert, Kristin A.</au><au>Freudenreich, Catherine H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2019-04-23</date><risdate>2019</risdate><volume>27</volume><issue>4</issue><spage>1151</spage><epage>1164.e5</epage><pages>1151-1164.e5</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Common fragile sites (CFSs) are genomic regions that display gaps and breaks in human metaphase chromosomes under replication stress and are often deleted in cancer cells. We studied an ∼300-bp subregion (Flex1) of human CFS FRA16D in yeast and found that it recapitulates characteristics of CFS fragility in human cells. Flex1 fragility is dependent on the ability of a variable-length AT repeat to form a cruciform structure that stalls replication. Fragility at Flex1 is initiated by structure-specific endonuclease Mus81-Mms4 acting together with the Slx1-4/Rad1-10 complex, whereas Yen1 protects Flex1 against breakage. Sae2 is required for healing of Flex1 after breakage. Our study shows that breakage within a CFS can be initiated by nuclease cleavage at forks stalled at DNA structures. Furthermore, our results suggest that CFSs are not just prone to breakage but also are impaired in their ability to heal, and this deleterious combination accounts for their fragility. [Display omitted] •FRA16D subregion Flex1 causes fragility in an AT length-dependent manner•Longer AT repeats form a cruciform and stall replication by human Pol δ•Flex1 is targeted by the Mus81 nuclease, whereas Yen1 protects against breakage•Fragility at Flex1 is due to a combination of increased breaks and impaired healing Kaushal et al. found that a subregion of fragile site FRA16D forms an abnormal DNA structure that stalls DNA polymerase, resulting in DNA breakage and difficulty healing. They identify nucleases that cleave this structure to cause the DNA breaks and postulate that difficulty healing makes these sites prone to rearrangements.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31018130</pmid><doi>10.1016/j.celrep.2019.03.103</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2019-04, Vol.27 (4), p.1151-1164.e5
issn 2211-1247
2211-1247
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6506224
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects AT repeat
CFS
Chromosome Breakage
Chromosome Fragile Sites - genetics
Chromosomes, Human, Pair 16 - genetics
common fragile site
cruciform structure
CtIP
DNA Polymerase III - genetics
DNA Polymerase III - metabolism
DNA Replication
Endonucleases - metabolism
FRA16D
Humans
Mus81 endonuclease
replication fork stall
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sae2
Slx4 complex
Tandem Repeat Sequences
title Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequence%20and%20Nuclease%20Requirements%20for%20Breakage%20and%20Healing%20of%20a%20Structure-Forming%20(AT)n%20Sequence%20within%20Fragile%20Site%20FRA16D&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Kaushal,%20Simran&rft.date=2019-04-23&rft.volume=27&rft.issue=4&rft.spage=1151&rft.epage=1164.e5&rft.pages=1151-1164.e5&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2019.03.103&rft_dat=%3Cproquest_pubme%3E2215017307%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-fafd2489b29f7838aa5cbc0627996e67fcbc102ed6340cf0418874d84d0ac0e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215017307&rft_id=info:pmid/31018130&rfr_iscdi=true