Loading…
On phase behavior and dynamical signatures of charged colloidal platelets
Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium is...
Saved in:
Published in: | Scientific reports 2013-12, Vol.3 (1), p.3559-3559, Article 3559 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium isotropic-nematic transition at moderate densities. These observations raise fundamental questions about the influence of electrostatic interactions on the isotropic-nematic transition and the organisation of charged platelets. We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of charged colloidal discs, by means of Monte-Carlo simulations and characterization of the dynamics of the structures. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets not only rationalizes generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. Furthermore, we find evidences of a strong slowing down of the dynamics upon increasing density. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep03559 |