Loading…

On phase behavior and dynamical signatures of charged colloidal platelets

Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium is...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2013-12, Vol.3 (1), p.3559-3559, Article 3559
Main Authors: Jabbari-Farouji, Sara, Weis, Jean-Jacques, Davidson, Patrick, Levitz, Pierre, Trizac, Emmanuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923
cites cdi_FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923
container_end_page 3559
container_issue 1
container_start_page 3559
container_title Scientific reports
container_volume 3
creator Jabbari-Farouji, Sara
Weis, Jean-Jacques
Davidson, Patrick
Levitz, Pierre
Trizac, Emmanuel
description Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium isotropic-nematic transition at moderate densities. These observations raise fundamental questions about the influence of electrostatic interactions on the isotropic-nematic transition and the organisation of charged platelets. We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of charged colloidal discs, by means of Monte-Carlo simulations and characterization of the dynamics of the structures. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets not only rationalizes generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. Furthermore, we find evidences of a strong slowing down of the dynamics upon increasing density.
doi_str_mv 10.1038/srep03559
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6506449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490782772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923</originalsourceid><addsrcrecordid>eNplUV9rFDEcDKLYUvvgF5AFX1Q4zd9N8iKUorZw0Bd9Dtnkt7dbcsma7B702zfH1fOseUn4zWRmkkHoLcGfCWbqS8kwYSaEfoHOKeZiRRmlL0_OZ-iylHtcl6CaE_0anVHOBKWCnqPbu9hMgy3QdDDY3ZhyY6Nv_EO029HZ0JRxE-28ZChN6hs32LwB37gUQhp9xadgZwgwlzfoVW9Dgcun_QL9-v7t5_XNan334_b6ar1yXNJ5JVslqes6qZWwHrhobQ3lmGLaMg5965nvO0mIbn1Hrdasl14xwkEI6jRlF-jrQXdaui14B3HONpgpj1ubH0yyo_kXieNgNmlnWoFbznUV-HgQGJ5du7lam_0ME640UXRHKvfDk1lOvxcos9mOxUEINkJaiiFcY6molPtc759R79OSY_0KQ5RWWFfr9q-5y6nU6vpjAoLNvk9z7LNy352-9Mj8014lfDoQSoXiBvKJ5X9qjwMZqJ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898094936</pqid></control><display><type>article</type><title>On phase behavior and dynamical signatures of charged colloidal platelets</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jabbari-Farouji, Sara ; Weis, Jean-Jacques ; Davidson, Patrick ; Levitz, Pierre ; Trizac, Emmanuel</creator><creatorcontrib>Jabbari-Farouji, Sara ; Weis, Jean-Jacques ; Davidson, Patrick ; Levitz, Pierre ; Trizac, Emmanuel</creatorcontrib><description>Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium isotropic-nematic transition at moderate densities. These observations raise fundamental questions about the influence of electrostatic interactions on the isotropic-nematic transition and the organisation of charged platelets. We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of charged colloidal discs, by means of Monte-Carlo simulations and characterization of the dynamics of the structures. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets not only rationalizes generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. Furthermore, we find evidences of a strong slowing down of the dynamics upon increasing density.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep03559</identifier><identifier>PMID: 24352252</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/94 ; 639/925/357/537 ; Anisotropy ; Chemical Sciences ; Clay ; Competition ; Crystals ; Electrostatic properties ; Electrostatics ; Humanities and Social Sciences ; Monte Carlo simulation ; multidisciplinary ; Platelets ; Science</subject><ispartof>Scientific reports, 2013-12, Vol.3 (1), p.3559-3559, Article 3559</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Dec 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2013, Macmillan Publishers Limited. All rights reserved 2013 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923</citedby><cites>FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898094936/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898094936?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24352252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01489182$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabbari-Farouji, Sara</creatorcontrib><creatorcontrib>Weis, Jean-Jacques</creatorcontrib><creatorcontrib>Davidson, Patrick</creatorcontrib><creatorcontrib>Levitz, Pierre</creatorcontrib><creatorcontrib>Trizac, Emmanuel</creatorcontrib><title>On phase behavior and dynamical signatures of charged colloidal platelets</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium isotropic-nematic transition at moderate densities. These observations raise fundamental questions about the influence of electrostatic interactions on the isotropic-nematic transition and the organisation of charged platelets. We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of charged colloidal discs, by means of Monte-Carlo simulations and characterization of the dynamics of the structures. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets not only rationalizes generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. Furthermore, we find evidences of a strong slowing down of the dynamics upon increasing density.</description><subject>639/766/94</subject><subject>639/925/357/537</subject><subject>Anisotropy</subject><subject>Chemical Sciences</subject><subject>Clay</subject><subject>Competition</subject><subject>Crystals</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Humanities and Social Sciences</subject><subject>Monte Carlo simulation</subject><subject>multidisciplinary</subject><subject>Platelets</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplUV9rFDEcDKLYUvvgF5AFX1Q4zd9N8iKUorZw0Bd9Dtnkt7dbcsma7B702zfH1fOseUn4zWRmkkHoLcGfCWbqS8kwYSaEfoHOKeZiRRmlL0_OZ-iylHtcl6CaE_0anVHOBKWCnqPbu9hMgy3QdDDY3ZhyY6Nv_EO029HZ0JRxE-28ZChN6hs32LwB37gUQhp9xadgZwgwlzfoVW9Dgcun_QL9-v7t5_XNan334_b6ar1yXNJ5JVslqes6qZWwHrhobQ3lmGLaMg5965nvO0mIbn1Hrdasl14xwkEI6jRlF-jrQXdaui14B3HONpgpj1ubH0yyo_kXieNgNmlnWoFbznUV-HgQGJ5du7lam_0ME640UXRHKvfDk1lOvxcos9mOxUEINkJaiiFcY6molPtc759R79OSY_0KQ5RWWFfr9q-5y6nU6vpjAoLNvk9z7LNy352-9Mj8014lfDoQSoXiBvKJ5X9qjwMZqJ8</recordid><startdate>20131219</startdate><enddate>20131219</enddate><creator>Jabbari-Farouji, Sara</creator><creator>Weis, Jean-Jacques</creator><creator>Davidson, Patrick</creator><creator>Levitz, Pierre</creator><creator>Trizac, Emmanuel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20131219</creationdate><title>On phase behavior and dynamical signatures of charged colloidal platelets</title><author>Jabbari-Farouji, Sara ; Weis, Jean-Jacques ; Davidson, Patrick ; Levitz, Pierre ; Trizac, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/766/94</topic><topic>639/925/357/537</topic><topic>Anisotropy</topic><topic>Chemical Sciences</topic><topic>Clay</topic><topic>Competition</topic><topic>Crystals</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Humanities and Social Sciences</topic><topic>Monte Carlo simulation</topic><topic>multidisciplinary</topic><topic>Platelets</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabbari-Farouji, Sara</creatorcontrib><creatorcontrib>Weis, Jean-Jacques</creatorcontrib><creatorcontrib>Davidson, Patrick</creatorcontrib><creatorcontrib>Levitz, Pierre</creatorcontrib><creatorcontrib>Trizac, Emmanuel</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabbari-Farouji, Sara</au><au>Weis, Jean-Jacques</au><au>Davidson, Patrick</au><au>Levitz, Pierre</au><au>Trizac, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On phase behavior and dynamical signatures of charged colloidal platelets</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2013-12-19</date><risdate>2013</risdate><volume>3</volume><issue>1</issue><spage>3559</spage><epage>3559</epage><pages>3559-3559</pages><artnum>3559</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium isotropic-nematic transition at moderate densities. These observations raise fundamental questions about the influence of electrostatic interactions on the isotropic-nematic transition and the organisation of charged platelets. We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of charged colloidal discs, by means of Monte-Carlo simulations and characterization of the dynamics of the structures. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets not only rationalizes generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. Furthermore, we find evidences of a strong slowing down of the dynamics upon increasing density.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24352252</pmid><doi>10.1038/srep03559</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2013-12, Vol.3 (1), p.3559-3559, Article 3559
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6506449
source NCBI_PubMed Central(免费); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/94
639/925/357/537
Anisotropy
Chemical Sciences
Clay
Competition
Crystals
Electrostatic properties
Electrostatics
Humanities and Social Sciences
Monte Carlo simulation
multidisciplinary
Platelets
Science
title On phase behavior and dynamical signatures of charged colloidal platelets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20phase%20behavior%20and%20dynamical%20signatures%20of%20charged%20colloidal%20platelets&rft.jtitle=Scientific%20reports&rft.au=Jabbari-Farouji,%20Sara&rft.date=2013-12-19&rft.volume=3&rft.issue=1&rft.spage=3559&rft.epage=3559&rft.pages=3559-3559&rft.artnum=3559&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep03559&rft_dat=%3Cproquest_pubme%3E1490782772%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898094936&rft_id=info:pmid/24352252&rfr_iscdi=true