Loading…
On phase behavior and dynamical signatures of charged colloidal platelets
Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium is...
Saved in:
Published in: | Scientific reports 2013-12, Vol.3 (1), p.3559-3559, Article 3559 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923 |
container_end_page | 3559 |
container_issue | 1 |
container_start_page | 3559 |
container_title | Scientific reports |
container_volume | 3 |
creator | Jabbari-Farouji, Sara Weis, Jean-Jacques Davidson, Patrick Levitz, Pierre Trizac, Emmanuel |
description | Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium isotropic-nematic transition at moderate densities. These observations raise fundamental questions about the influence of electrostatic interactions on the isotropic-nematic transition and the organisation of charged platelets. We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of charged colloidal discs, by means of Monte-Carlo simulations and characterization of the dynamics of the structures. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets not only rationalizes generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. Furthermore, we find evidences of a strong slowing down of the dynamics upon increasing density. |
doi_str_mv | 10.1038/srep03559 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6506449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490782772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923</originalsourceid><addsrcrecordid>eNplUV9rFDEcDKLYUvvgF5AFX1Q4zd9N8iKUorZw0Bd9Dtnkt7dbcsma7B702zfH1fOseUn4zWRmkkHoLcGfCWbqS8kwYSaEfoHOKeZiRRmlL0_OZ-iylHtcl6CaE_0anVHOBKWCnqPbu9hMgy3QdDDY3ZhyY6Nv_EO029HZ0JRxE-28ZChN6hs32LwB37gUQhp9xadgZwgwlzfoVW9Dgcun_QL9-v7t5_XNan334_b6ar1yXNJ5JVslqes6qZWwHrhobQ3lmGLaMg5965nvO0mIbn1Hrdasl14xwkEI6jRlF-jrQXdaui14B3HONpgpj1ubH0yyo_kXieNgNmlnWoFbznUV-HgQGJ5du7lam_0ME640UXRHKvfDk1lOvxcos9mOxUEINkJaiiFcY6molPtc759R79OSY_0KQ5RWWFfr9q-5y6nU6vpjAoLNvk9z7LNy352-9Mj8014lfDoQSoXiBvKJ5X9qjwMZqJ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898094936</pqid></control><display><type>article</type><title>On phase behavior and dynamical signatures of charged colloidal platelets</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jabbari-Farouji, Sara ; Weis, Jean-Jacques ; Davidson, Patrick ; Levitz, Pierre ; Trizac, Emmanuel</creator><creatorcontrib>Jabbari-Farouji, Sara ; Weis, Jean-Jacques ; Davidson, Patrick ; Levitz, Pierre ; Trizac, Emmanuel</creatorcontrib><description>Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium isotropic-nematic transition at moderate densities. These observations raise fundamental questions about the influence of electrostatic interactions on the isotropic-nematic transition and the organisation of charged platelets. We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of charged colloidal discs, by means of Monte-Carlo simulations and characterization of the dynamics of the structures. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets not only rationalizes generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. Furthermore, we find evidences of a strong slowing down of the dynamics upon increasing density.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep03559</identifier><identifier>PMID: 24352252</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/94 ; 639/925/357/537 ; Anisotropy ; Chemical Sciences ; Clay ; Competition ; Crystals ; Electrostatic properties ; Electrostatics ; Humanities and Social Sciences ; Monte Carlo simulation ; multidisciplinary ; Platelets ; Science</subject><ispartof>Scientific reports, 2013-12, Vol.3 (1), p.3559-3559, Article 3559</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Dec 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2013, Macmillan Publishers Limited. All rights reserved 2013 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923</citedby><cites>FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898094936/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898094936?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24352252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01489182$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabbari-Farouji, Sara</creatorcontrib><creatorcontrib>Weis, Jean-Jacques</creatorcontrib><creatorcontrib>Davidson, Patrick</creatorcontrib><creatorcontrib>Levitz, Pierre</creatorcontrib><creatorcontrib>Trizac, Emmanuel</creatorcontrib><title>On phase behavior and dynamical signatures of charged colloidal platelets</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium isotropic-nematic transition at moderate densities. These observations raise fundamental questions about the influence of electrostatic interactions on the isotropic-nematic transition and the organisation of charged platelets. We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of charged colloidal discs, by means of Monte-Carlo simulations and characterization of the dynamics of the structures. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets not only rationalizes generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. Furthermore, we find evidences of a strong slowing down of the dynamics upon increasing density.</description><subject>639/766/94</subject><subject>639/925/357/537</subject><subject>Anisotropy</subject><subject>Chemical Sciences</subject><subject>Clay</subject><subject>Competition</subject><subject>Crystals</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Humanities and Social Sciences</subject><subject>Monte Carlo simulation</subject><subject>multidisciplinary</subject><subject>Platelets</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplUV9rFDEcDKLYUvvgF5AFX1Q4zd9N8iKUorZw0Bd9Dtnkt7dbcsma7B702zfH1fOseUn4zWRmkkHoLcGfCWbqS8kwYSaEfoHOKeZiRRmlL0_OZ-iylHtcl6CaE_0anVHOBKWCnqPbu9hMgy3QdDDY3ZhyY6Nv_EO029HZ0JRxE-28ZChN6hs32LwB37gUQhp9xadgZwgwlzfoVW9Dgcun_QL9-v7t5_XNan334_b6ar1yXNJ5JVslqes6qZWwHrhobQ3lmGLaMg5965nvO0mIbn1Hrdasl14xwkEI6jRlF-jrQXdaui14B3HONpgpj1ubH0yyo_kXieNgNmlnWoFbznUV-HgQGJ5du7lam_0ME640UXRHKvfDk1lOvxcos9mOxUEINkJaiiFcY6molPtc759R79OSY_0KQ5RWWFfr9q-5y6nU6vpjAoLNvk9z7LNy352-9Mj8014lfDoQSoXiBvKJ5X9qjwMZqJ8</recordid><startdate>20131219</startdate><enddate>20131219</enddate><creator>Jabbari-Farouji, Sara</creator><creator>Weis, Jean-Jacques</creator><creator>Davidson, Patrick</creator><creator>Levitz, Pierre</creator><creator>Trizac, Emmanuel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20131219</creationdate><title>On phase behavior and dynamical signatures of charged colloidal platelets</title><author>Jabbari-Farouji, Sara ; Weis, Jean-Jacques ; Davidson, Patrick ; Levitz, Pierre ; Trizac, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/766/94</topic><topic>639/925/357/537</topic><topic>Anisotropy</topic><topic>Chemical Sciences</topic><topic>Clay</topic><topic>Competition</topic><topic>Crystals</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Humanities and Social Sciences</topic><topic>Monte Carlo simulation</topic><topic>multidisciplinary</topic><topic>Platelets</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabbari-Farouji, Sara</creatorcontrib><creatorcontrib>Weis, Jean-Jacques</creatorcontrib><creatorcontrib>Davidson, Patrick</creatorcontrib><creatorcontrib>Levitz, Pierre</creatorcontrib><creatorcontrib>Trizac, Emmanuel</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabbari-Farouji, Sara</au><au>Weis, Jean-Jacques</au><au>Davidson, Patrick</au><au>Levitz, Pierre</au><au>Trizac, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On phase behavior and dynamical signatures of charged colloidal platelets</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2013-12-19</date><risdate>2013</risdate><volume>3</volume><issue>1</issue><spage>3559</spage><epage>3559</epage><pages>3559-3559</pages><artnum>3559</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Charged platelet suspensions, such as swelling clays, disc-like mineral crystallites or exfoliated nanosheets are ubiquitous in nature. Their phase behaviours are nevertheless still poorly understood: while some clay suspensions form arrested states at low densities, others exhibit an equilibrium isotropic-nematic transition at moderate densities. These observations raise fundamental questions about the influence of electrostatic interactions on the isotropic-nematic transition and the organisation of charged platelets. We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of charged colloidal discs, by means of Monte-Carlo simulations and characterization of the dynamics of the structures. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets not only rationalizes generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. Furthermore, we find evidences of a strong slowing down of the dynamics upon increasing density.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24352252</pmid><doi>10.1038/srep03559</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2013-12, Vol.3 (1), p.3559-3559, Article 3559 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6506449 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/94 639/925/357/537 Anisotropy Chemical Sciences Clay Competition Crystals Electrostatic properties Electrostatics Humanities and Social Sciences Monte Carlo simulation multidisciplinary Platelets Science |
title | On phase behavior and dynamical signatures of charged colloidal platelets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20phase%20behavior%20and%20dynamical%20signatures%20of%20charged%20colloidal%20platelets&rft.jtitle=Scientific%20reports&rft.au=Jabbari-Farouji,%20Sara&rft.date=2013-12-19&rft.volume=3&rft.issue=1&rft.spage=3559&rft.epage=3559&rft.pages=3559-3559&rft.artnum=3559&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep03559&rft_dat=%3Cproquest_pubme%3E1490782772%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-76872cbb7985ade456a941c3839a34ef6d3dfb71196db2a993f7d8314e552c923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898094936&rft_id=info:pmid/24352252&rfr_iscdi=true |