Loading…
Differential regulation of host plant adaptive genes in Pieris butterflies exposed to a range of glucosinolate profiles in their host plants
Specialist herbivores have often evolved highly sophisticated mechanisms to counteract defenses mediated by major plant secondary-metabolites. Plant species of the herbivore host range often display high chemical diversity and it is not well understood how specialist herbivores respond to this chemi...
Saved in:
Published in: | Scientific reports 2019-05, Vol.9 (1), p.7256, Article 7256 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-d0c141fba883dc0b35edcb1ed8a2ce8dd30bbd4798dcc2be30b6aafd986dcc473 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-d0c141fba883dc0b35edcb1ed8a2ce8dd30bbd4798dcc2be30b6aafd986dcc473 |
container_end_page | |
container_issue | 1 |
container_start_page | 7256 |
container_title | Scientific reports |
container_volume | 9 |
creator | Okamura, Yu Sato, Ai Tsuzuki, Natsumi Sawada, Yuji Hirai, Masami Yokota Heidel-Fischer, Hanna Reichelt, Michael Murakami, Masashi Vogel, Heiko |
description | Specialist herbivores have often evolved highly sophisticated mechanisms to counteract defenses mediated by major plant secondary-metabolites. Plant species of the herbivore host range often display high chemical diversity and it is not well understood how specialist herbivores respond to this chemical diversity.
Pieris
larvae overcome toxic products from glucosinolate hydrolysis, the major chemical defense of their Brassicaceae hosts, by expressing nitrile-specifier proteins (NSP) in their gut. Furthermore,
Pieris
butterflies possess so-called major allergen (MA) proteins, which are multi-domain variants of a single domain major allergen (SDMA) protein expressed in the guts of Lepidopteran larvae. Here we show that
Pieris
larvae fine-tune NSP and MA gene expression depending on the glucosinolate profiles of their Brassicaceae hosts. Although the role of MA is not yet fully understood, the expression levels of NSP and MA in larvae that fed on plants whose glucosinolate composition varied was dramatically changed, whereas levels of SDMA expression remained unchanged. In addition, we found a similar regulation pattern among these genes in larvae feeding on
Arabidopsis
mutants with different glucosinolate profiles. Our results demonstrate that
Pieris
larvae appear to use different host plant adaptive genes to overcome a wide range of glucosinolate profiles in their host plants. |
doi_str_mv | 10.1038/s41598-019-43703-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6510735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222924995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-d0c141fba883dc0b35edcb1ed8a2ce8dd30bbd4798dcc2be30b6aafd986dcc473</originalsourceid><addsrcrecordid>eNp9Uctu1TAQtRCIVqU_wKKyxDrUjyTX3lSqCqWVKsEC1pZjj3NdpXZqOxX8Ax9d36aUy4bZ2J4558x4DkLvKflICRenuaWdFA2hsmn5hvBGvEKHjLRdwzhjr_fuB-g451tSo2OypfItOuCUbPqe9ofo9yfvHCQIxesJJxiXSRcfA44Ob2MueJ50KFhbPRf_AHiEABn7gL95SD7jYSkFkpt8zcLPOWawuESscdJhhJ3KOC0mZh9iFQY8p-j8tEqULfi01yW_Q2-cnjIcP59H6Mfl5-8XV83N1y_XF-c3jekoLY0lhrbUDVoIbg0ZeAfWDBSs0MyAsJaTYbDtRgprDBugPnutnZWir4l2w4_Q2ao7L8Nd5dbfJz2pOfk7nX6pqL36txL8Vo3xQfVdXRzvqsCHZ4EU7xfIRd3GJYU6s2I1JGul3KHYijIp5pzAvXSgRO1MVKuJqpqonkxUopJO9md7ofyxrAL4Csi1VHec_vb-j-wjdbWteA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222924995</pqid></control><display><type>article</type><title>Differential regulation of host plant adaptive genes in Pieris butterflies exposed to a range of glucosinolate profiles in their host plants</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Okamura, Yu ; Sato, Ai ; Tsuzuki, Natsumi ; Sawada, Yuji ; Hirai, Masami Yokota ; Heidel-Fischer, Hanna ; Reichelt, Michael ; Murakami, Masashi ; Vogel, Heiko</creator><creatorcontrib>Okamura, Yu ; Sato, Ai ; Tsuzuki, Natsumi ; Sawada, Yuji ; Hirai, Masami Yokota ; Heidel-Fischer, Hanna ; Reichelt, Michael ; Murakami, Masashi ; Vogel, Heiko</creatorcontrib><description>Specialist herbivores have often evolved highly sophisticated mechanisms to counteract defenses mediated by major plant secondary-metabolites. Plant species of the herbivore host range often display high chemical diversity and it is not well understood how specialist herbivores respond to this chemical diversity.
Pieris
larvae overcome toxic products from glucosinolate hydrolysis, the major chemical defense of their Brassicaceae hosts, by expressing nitrile-specifier proteins (NSP) in their gut. Furthermore,
Pieris
butterflies possess so-called major allergen (MA) proteins, which are multi-domain variants of a single domain major allergen (SDMA) protein expressed in the guts of Lepidopteran larvae. Here we show that
Pieris
larvae fine-tune NSP and MA gene expression depending on the glucosinolate profiles of their Brassicaceae hosts. Although the role of MA is not yet fully understood, the expression levels of NSP and MA in larvae that fed on plants whose glucosinolate composition varied was dramatically changed, whereas levels of SDMA expression remained unchanged. In addition, we found a similar regulation pattern among these genes in larvae feeding on
Arabidopsis
mutants with different glucosinolate profiles. Our results demonstrate that
Pieris
larvae appear to use different host plant adaptive genes to overcome a wide range of glucosinolate profiles in their host plants.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-43703-8</identifier><identifier>PMID: 31076616</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 38/91 ; 631/158/2452 ; 631/158/670 ; 631/181/2481 ; Adaptation, Biological - genetics ; Allergens ; Allergens - genetics ; Animals ; Arabidopsis - genetics ; Brassicaceae ; Butterflies & moths ; Butterflies - genetics ; Chemical defense ; Ericaceae - genetics ; Gene expression ; Gene regulation ; Genes, Plant - genetics ; Glucosinolates - genetics ; Herbivores ; Host plants ; Host range ; Humanities and Social Sciences ; Larva - genetics ; Larvae ; Metabolites ; multidisciplinary ; Plant species ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2019-05, Vol.9 (1), p.7256, Article 7256</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-d0c141fba883dc0b35edcb1ed8a2ce8dd30bbd4798dcc2be30b6aafd986dcc473</citedby><cites>FETCH-LOGICAL-c511t-d0c141fba883dc0b35edcb1ed8a2ce8dd30bbd4798dcc2be30b6aafd986dcc473</cites><orcidid>0000-0002-6691-6500 ; 0000-0001-9821-7731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2222924995/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2222924995?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31076616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okamura, Yu</creatorcontrib><creatorcontrib>Sato, Ai</creatorcontrib><creatorcontrib>Tsuzuki, Natsumi</creatorcontrib><creatorcontrib>Sawada, Yuji</creatorcontrib><creatorcontrib>Hirai, Masami Yokota</creatorcontrib><creatorcontrib>Heidel-Fischer, Hanna</creatorcontrib><creatorcontrib>Reichelt, Michael</creatorcontrib><creatorcontrib>Murakami, Masashi</creatorcontrib><creatorcontrib>Vogel, Heiko</creatorcontrib><title>Differential regulation of host plant adaptive genes in Pieris butterflies exposed to a range of glucosinolate profiles in their host plants</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Specialist herbivores have often evolved highly sophisticated mechanisms to counteract defenses mediated by major plant secondary-metabolites. Plant species of the herbivore host range often display high chemical diversity and it is not well understood how specialist herbivores respond to this chemical diversity.
Pieris
larvae overcome toxic products from glucosinolate hydrolysis, the major chemical defense of their Brassicaceae hosts, by expressing nitrile-specifier proteins (NSP) in their gut. Furthermore,
Pieris
butterflies possess so-called major allergen (MA) proteins, which are multi-domain variants of a single domain major allergen (SDMA) protein expressed in the guts of Lepidopteran larvae. Here we show that
Pieris
larvae fine-tune NSP and MA gene expression depending on the glucosinolate profiles of their Brassicaceae hosts. Although the role of MA is not yet fully understood, the expression levels of NSP and MA in larvae that fed on plants whose glucosinolate composition varied was dramatically changed, whereas levels of SDMA expression remained unchanged. In addition, we found a similar regulation pattern among these genes in larvae feeding on
Arabidopsis
mutants with different glucosinolate profiles. Our results demonstrate that
Pieris
larvae appear to use different host plant adaptive genes to overcome a wide range of glucosinolate profiles in their host plants.</description><subject>101/58</subject><subject>38/91</subject><subject>631/158/2452</subject><subject>631/158/670</subject><subject>631/181/2481</subject><subject>Adaptation, Biological - genetics</subject><subject>Allergens</subject><subject>Allergens - genetics</subject><subject>Animals</subject><subject>Arabidopsis - genetics</subject><subject>Brassicaceae</subject><subject>Butterflies & moths</subject><subject>Butterflies - genetics</subject><subject>Chemical defense</subject><subject>Ericaceae - genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes, Plant - genetics</subject><subject>Glucosinolates - genetics</subject><subject>Herbivores</subject><subject>Host plants</subject><subject>Host range</subject><subject>Humanities and Social Sciences</subject><subject>Larva - genetics</subject><subject>Larvae</subject><subject>Metabolites</subject><subject>multidisciplinary</subject><subject>Plant species</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9Uctu1TAQtRCIVqU_wKKyxDrUjyTX3lSqCqWVKsEC1pZjj3NdpXZqOxX8Ax9d36aUy4bZ2J4558x4DkLvKflICRenuaWdFA2hsmn5hvBGvEKHjLRdwzhjr_fuB-g451tSo2OypfItOuCUbPqe9ofo9yfvHCQIxesJJxiXSRcfA44Ob2MueJ50KFhbPRf_AHiEABn7gL95SD7jYSkFkpt8zcLPOWawuESscdJhhJ3KOC0mZh9iFQY8p-j8tEqULfi01yW_Q2-cnjIcP59H6Mfl5-8XV83N1y_XF-c3jekoLY0lhrbUDVoIbg0ZeAfWDBSs0MyAsJaTYbDtRgprDBugPnutnZWir4l2w4_Q2ao7L8Nd5dbfJz2pOfk7nX6pqL36txL8Vo3xQfVdXRzvqsCHZ4EU7xfIRd3GJYU6s2I1JGul3KHYijIp5pzAvXSgRO1MVKuJqpqonkxUopJO9md7ofyxrAL4Csi1VHec_vb-j-wjdbWteA</recordid><startdate>20190510</startdate><enddate>20190510</enddate><creator>Okamura, Yu</creator><creator>Sato, Ai</creator><creator>Tsuzuki, Natsumi</creator><creator>Sawada, Yuji</creator><creator>Hirai, Masami Yokota</creator><creator>Heidel-Fischer, Hanna</creator><creator>Reichelt, Michael</creator><creator>Murakami, Masashi</creator><creator>Vogel, Heiko</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6691-6500</orcidid><orcidid>https://orcid.org/0000-0001-9821-7731</orcidid></search><sort><creationdate>20190510</creationdate><title>Differential regulation of host plant adaptive genes in Pieris butterflies exposed to a range of glucosinolate profiles in their host plants</title><author>Okamura, Yu ; Sato, Ai ; Tsuzuki, Natsumi ; Sawada, Yuji ; Hirai, Masami Yokota ; Heidel-Fischer, Hanna ; Reichelt, Michael ; Murakami, Masashi ; Vogel, Heiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-d0c141fba883dc0b35edcb1ed8a2ce8dd30bbd4798dcc2be30b6aafd986dcc473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>101/58</topic><topic>38/91</topic><topic>631/158/2452</topic><topic>631/158/670</topic><topic>631/181/2481</topic><topic>Adaptation, Biological - genetics</topic><topic>Allergens</topic><topic>Allergens - genetics</topic><topic>Animals</topic><topic>Arabidopsis - genetics</topic><topic>Brassicaceae</topic><topic>Butterflies & moths</topic><topic>Butterflies - genetics</topic><topic>Chemical defense</topic><topic>Ericaceae - genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes, Plant - genetics</topic><topic>Glucosinolates - genetics</topic><topic>Herbivores</topic><topic>Host plants</topic><topic>Host range</topic><topic>Humanities and Social Sciences</topic><topic>Larva - genetics</topic><topic>Larvae</topic><topic>Metabolites</topic><topic>multidisciplinary</topic><topic>Plant species</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okamura, Yu</creatorcontrib><creatorcontrib>Sato, Ai</creatorcontrib><creatorcontrib>Tsuzuki, Natsumi</creatorcontrib><creatorcontrib>Sawada, Yuji</creatorcontrib><creatorcontrib>Hirai, Masami Yokota</creatorcontrib><creatorcontrib>Heidel-Fischer, Hanna</creatorcontrib><creatorcontrib>Reichelt, Michael</creatorcontrib><creatorcontrib>Murakami, Masashi</creatorcontrib><creatorcontrib>Vogel, Heiko</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okamura, Yu</au><au>Sato, Ai</au><au>Tsuzuki, Natsumi</au><au>Sawada, Yuji</au><au>Hirai, Masami Yokota</au><au>Heidel-Fischer, Hanna</au><au>Reichelt, Michael</au><au>Murakami, Masashi</au><au>Vogel, Heiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential regulation of host plant adaptive genes in Pieris butterflies exposed to a range of glucosinolate profiles in their host plants</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-05-10</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>7256</spage><pages>7256-</pages><artnum>7256</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Specialist herbivores have often evolved highly sophisticated mechanisms to counteract defenses mediated by major plant secondary-metabolites. Plant species of the herbivore host range often display high chemical diversity and it is not well understood how specialist herbivores respond to this chemical diversity.
Pieris
larvae overcome toxic products from glucosinolate hydrolysis, the major chemical defense of their Brassicaceae hosts, by expressing nitrile-specifier proteins (NSP) in their gut. Furthermore,
Pieris
butterflies possess so-called major allergen (MA) proteins, which are multi-domain variants of a single domain major allergen (SDMA) protein expressed in the guts of Lepidopteran larvae. Here we show that
Pieris
larvae fine-tune NSP and MA gene expression depending on the glucosinolate profiles of their Brassicaceae hosts. Although the role of MA is not yet fully understood, the expression levels of NSP and MA in larvae that fed on plants whose glucosinolate composition varied was dramatically changed, whereas levels of SDMA expression remained unchanged. In addition, we found a similar regulation pattern among these genes in larvae feeding on
Arabidopsis
mutants with different glucosinolate profiles. Our results demonstrate that
Pieris
larvae appear to use different host plant adaptive genes to overcome a wide range of glucosinolate profiles in their host plants.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31076616</pmid><doi>10.1038/s41598-019-43703-8</doi><orcidid>https://orcid.org/0000-0002-6691-6500</orcidid><orcidid>https://orcid.org/0000-0001-9821-7731</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-05, Vol.9 (1), p.7256, Article 7256 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6510735 |
source | PubMed Central Free; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 101/58 38/91 631/158/2452 631/158/670 631/181/2481 Adaptation, Biological - genetics Allergens Allergens - genetics Animals Arabidopsis - genetics Brassicaceae Butterflies & moths Butterflies - genetics Chemical defense Ericaceae - genetics Gene expression Gene regulation Genes, Plant - genetics Glucosinolates - genetics Herbivores Host plants Host range Humanities and Social Sciences Larva - genetics Larvae Metabolites multidisciplinary Plant species Science Science (multidisciplinary) |
title | Differential regulation of host plant adaptive genes in Pieris butterflies exposed to a range of glucosinolate profiles in their host plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20regulation%20of%20host%20plant%20adaptive%20genes%20in%20Pieris%20butterflies%20exposed%20to%20a%20range%20of%20glucosinolate%20profiles%20in%20their%20host%20plants&rft.jtitle=Scientific%20reports&rft.au=Okamura,%20Yu&rft.date=2019-05-10&rft.volume=9&rft.issue=1&rft.spage=7256&rft.pages=7256-&rft.artnum=7256&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-43703-8&rft_dat=%3Cproquest_pubme%3E2222924995%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-d0c141fba883dc0b35edcb1ed8a2ce8dd30bbd4798dcc2be30b6aafd986dcc473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2222924995&rft_id=info:pmid/31076616&rfr_iscdi=true |