Loading…

Graphene Quantum Dots Decorated Gold-Polyaniline Nanowire for Impedimetric Detection of Carcinoembryonic Antigen

A label-free impedimetric immunosensor based on N, S-graphene quantum dots@Au-polyaniline (N, S-GQDs@Au-PANI) nanowires was fabricated for the quantitative detection of carcinoembryonic antigen (CEA). The N, S-GQDs and Au-PANI were synthesized by a simple hydrothermal pyrolysis and interfacial polym...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-05, Vol.9 (1), p.7214, Article 7214
Main Authors: Ganganboina, Akhilesh Babu, Doong, Ruey-An
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A label-free impedimetric immunosensor based on N, S-graphene quantum dots@Au-polyaniline (N, S-GQDs@Au-PANI) nanowires was fabricated for the quantitative detection of carcinoembryonic antigen (CEA). The N, S-GQDs and Au-PANI were synthesized by a simple hydrothermal pyrolysis and interfacial polymerization, respectively. Subsequently, 2–9 nm N, S-GQDs are successfully decorated onto 30–50 nm Au-PANI nanowires by Au-thiol linkage to serve as the bifunctional probe for amplifying the electrochemical activity as well as anchoring anti-CEA. The N, S-GQDs@Au-PANI nanowires are excellent conducting materials to accelerate the electron transfer, while the formation of CEA antibody-antigen bioconjugates after the addition of CEA significantly increase the charge transfer resistance, and subsequently provides a highly stable and label-free immunoassay platform for the impedimetric detection of CEA. The label-free immunosensor exhibits a wide linear range from 0.5 to 1000 ng mL −1 with a low detection limit of 0.01 ng mL −1 . The N, S-GQDs@Au-PANI based immunosensor also shows high selectivity and stability over other cancer makers and amino acids. Moreover, this promising platform is successfully applied to the detection of CEA in human serum samples with excellent recovery of (96.0 ± 2.6)–(103 ± 3.8)%. These results clearly demonstrate a newly developed highly efficient and label-free impedimetric immunosensor for the detection of CEA using N, S-GQDs@Au-PANI nanowires as the biosensing probe, which can pave the gateway for the fabrication of high performance and robust impedimetric immunosensor to detect cancer makers in early stage of cancer diagnosis and therapy.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-43740-3