Loading…

Learning new gait patterns is enhanced by specificity of training rather than progression of task difficulty

The use of motor learning strategies may enhance rehabilitation outcomes of individuals with neurological injuries (e.g., stroke or cerebral palsy). A common strategy to facilitate learning of challenging tasks is to use sequential progression – i.e., initially reduce task difficulty and slowly incr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2019-05, Vol.88, p.33-37
Main Authors: Krishnan, Chandramouli, Dharia, Aastha K., Augenstein, Thomas E., Washabaugh, Edward P., Reid, Courtney E., Brown, Scott R., Ranganathan, Rajiv
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of motor learning strategies may enhance rehabilitation outcomes of individuals with neurological injuries (e.g., stroke or cerebral palsy). A common strategy to facilitate learning of challenging tasks is to use sequential progression – i.e., initially reduce task difficulty and slowly increase task difficulty until the desired difficulty level is reached. However, the evidence related to the use of such sequential progressions to improve learning is mixed for functional skill learning tasks, especially considering situations where practice duration is limited. Here, we studied the benefits of sequential progression using a functional motor learning task that has been previously used in gait rehabilitation. Three groups of participants (N = 43) learned a novel motor task during treadmill walking using different learning strategies. Participants in the specific group (n = 21) practiced only the criterion task (i.e., matching a target template that was scaled-up by 30%) throughout the training. Participants in the sequential group (n = 11) gradually progressed to the criterion task (from 3% to 30% in increments of 3%), whereas participants in the random group (n = 11) started at 3% and progressed in random increments (involving both increases and decreases in task difficulty) to the criterion task. At the end of training, kinematic tracking performance on the criterion task was evaluated in all participants both with and without visual feedback. Results indicated that the tracking error was significantly lower in the specific group, and no differences were observed between the sequential and the random progression groups. The findings indicate that the amount of practice in the criterion task is more critical than the difficulty and variations of task practice when learning new gait patterns during treadmill walking.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2019.03.014