Loading…
C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A
A GGGGCC hexanucleotide repeat expansion within the C9orf72 gene is the most common genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Sense and antisense repeat-containing transcripts undergo repeat-associated non-AUG-initiated translation to produce five dipeptide pro...
Saved in:
Published in: | Acta neuropathologica 2019-03, Vol.137 (3), p.487-500 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A GGGGCC hexanucleotide repeat expansion within the
C9orf72
gene is the most common genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Sense and antisense repeat-containing transcripts undergo repeat-associated non-AUG-initiated translation to produce five dipeptide proteins (DPRs). The polyGR and polyPR DPRs are extremely toxic when expressed in
Drosophila
neurons. To determine the mechanism that mediates this toxicity, we purified DPRs from the
Drosophila
brain and used mass spectrometry to identify the in vivo neuronal DPR interactome. PolyGR and polyPR interact with ribosomal proteins, and inhibit translation in both human iPSC-derived motor neurons, and adult
Drosophila
neurons. We next performed a screen of 81 translation-associated proteins in GGGGCC repeat-expressing
Drosophila
to determine whether this translational repression can be overcome and if this impacts neurodegeneration. Expression of the translation initiation factor eIF1A uniquely rescued DPR-induced toxicity in vivo, indicating that restoring translation is a potential therapeutic strategy. These data directly implicate translational repression in
C9orf72
repeat-induced neurodegeneration and identify eIF1A as a novel modifier of
C9orf72
repeat toxicity. |
---|---|
ISSN: | 0001-6322 1432-0533 |
DOI: | 10.1007/s00401-018-1946-4 |