Loading…

Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimer’s disease

In addition to the devastating symptoms of dementia, Alzheimer’s disease (AD) is characterized by accumulation of the processing products of the amyloid-β (Aβ) peptide precursor protein (APP). APP’s non-pathogenic functions include regulating intracellular iron (Fe) homeostasis. MicroRNAs are small...

Full description

Saved in:
Bibliographic Details
Published in:Molecular psychiatry 2019-03, Vol.24 (3), p.345-363
Main Authors: Long, Justin M., Maloney, Bryan, Rogers, Jack T., Lahiri, Debomoy K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In addition to the devastating symptoms of dementia, Alzheimer’s disease (AD) is characterized by accumulation of the processing products of the amyloid-β (Aβ) peptide precursor protein (APP). APP’s non-pathogenic functions include regulating intracellular iron (Fe) homeostasis. MicroRNAs are small (~ 20 nucleotides) RNA species that instill specificity to the RNA-induced silencing complex (RISC). In most cases, RISC inhibits mRNA translation through the 3′-untranslated region (UTR) sequence. By contrast, we report a novel activity of miR-346: specifically, that it targets the APP mRNA 5′-UTR to upregulate APP translation and Aβ production. This upregulation is reduced but not eliminated by knockdown of argonaute 2. The target site for miR-346 overlaps with active sites for an iron-responsive element (IRE) and an interleukin-1 (IL-1) acute box element. IREs interact with iron response protein1 (IRP1), an iron-dependent translational repressor. In primary human brain cultures, miR-346 activity required chelation of Fe. In addition, miR-346 levels are altered in late-Braak stage AD. Thus, miR-346 plays a role in upregulation of APP in the CNS and participates in maintaining APP regulation of Fe, which is disrupted in late stages of AD. Further work will be necessary to integrate other metals, and IL-1 into the Fe-miR-346 activity network. We, thus, propose a “FeAR” (Fe, APP, RNA) nexus in the APP 5′-UTR that includes an overlapping miR-346-binding site and the APP IRE. When a “healthy FeAR” exists, activities of miR-346 and IRP/Fe interact to maintain APP homeostasis. Disruption of an element that targets the FeAR nexus would lead to pathogenic disruption of APP translation and protein production.
ISSN:1359-4184
1476-5578
DOI:10.1038/s41380-018-0266-3