Loading…
Comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts"
Saved in:
Published in: | Journal of the American Medical Informatics Association : JAMIA 2019-06, Vol.26 (6), p.577-579 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-38b700b80e36d47075827775a259999e09ea4c800a7cf71a919ca61fc949a2433 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-38b700b80e36d47075827775a259999e09ea4c800a7cf71a919ca61fc949a2433 |
container_end_page | 579 |
container_issue | 6 |
container_start_page | 577 |
container_title | Journal of the American Medical Informatics Association : JAMIA |
container_volume | 26 |
creator | Magge, Arjun Sarker, Abeed Nikfarjam, Azadeh Gonzalez-Hernandez, Graciela |
description | |
doi_str_mv | 10.1093/jamia/ocz013 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31087070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-38b700b80e36d47075827775a259999e09ea4c800a7cf71a919ca61fc949a2433</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoflRvniX0bG2y2W12exCkfoLgpYK3ZZrOttHdpCTZFv0R_mbTVkXnMgMz7zO8vISccnbBWSH6r9Bo6Fv1wbjYIYc8S2SvkOnL7p_5gBx5_8oYHyQi2ycHgrNcMskOyefINg2aQK0Z0u414oLWCM5oM6OVdXQxB9eAsks90zUYhUPqULXOrTUGWwd1bGFl3RsFp-Y6oAqtQ79R1zDBeo2C6RKdRzp17SwCQAVtjafa0PFKh4DxkfXBd4_JXgW1x5Pv3iHPtzfj0X3v8enuYXT12FMiT0NP5BPJ2CRnKAbTNDrJ8kRKmUGSFbGQFQipyhkDqSrJoeCFggGvVJEWkKRCdMjllrtoJw1OVXQTnZQLpxtw76UFXf7fGD0vZ3ZZDjKeZQmLgPMtQDnrvcPqV8tZuc6l3ORSbnOJ52d___0e_wQhvgBC7I84</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts"</title><source>Open Access: PubMed Central</source><source>Oxford Journals Online</source><creator>Magge, Arjun ; Sarker, Abeed ; Nikfarjam, Azadeh ; Gonzalez-Hernandez, Graciela</creator><creatorcontrib>Magge, Arjun ; Sarker, Abeed ; Nikfarjam, Azadeh ; Gonzalez-Hernandez, Graciela</creatorcontrib><identifier>ISSN: 1527-974X</identifier><identifier>ISSN: 1067-5027</identifier><identifier>EISSN: 1527-974X</identifier><identifier>DOI: 10.1093/jamia/ocz013</identifier><identifier>PMID: 31087070</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Correspondence ; Data Mining - methods ; Datasets as Topic ; Deep Learning ; Drug-Related Side Effects and Adverse Reactions ; Humans ; Natural Language Processing ; Neural Networks, Computer ; Pharmacovigilance ; Social Media</subject><ispartof>Journal of the American Medical Informatics Association : JAMIA, 2019-06, Vol.26 (6), p.577-579</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-38b700b80e36d47075827775a259999e09ea4c800a7cf71a919ca61fc949a2433</citedby><cites>FETCH-LOGICAL-c384t-38b700b80e36d47075827775a259999e09ea4c800a7cf71a919ca61fc949a2433</cites><orcidid>0000-0001-7358-544X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515520/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31087070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Magge, Arjun</creatorcontrib><creatorcontrib>Sarker, Abeed</creatorcontrib><creatorcontrib>Nikfarjam, Azadeh</creatorcontrib><creatorcontrib>Gonzalez-Hernandez, Graciela</creatorcontrib><title>Comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts"</title><title>Journal of the American Medical Informatics Association : JAMIA</title><addtitle>J Am Med Inform Assoc</addtitle><subject>Correspondence</subject><subject>Data Mining - methods</subject><subject>Datasets as Topic</subject><subject>Deep Learning</subject><subject>Drug-Related Side Effects and Adverse Reactions</subject><subject>Humans</subject><subject>Natural Language Processing</subject><subject>Neural Networks, Computer</subject><subject>Pharmacovigilance</subject><subject>Social Media</subject><issn>1527-974X</issn><issn>1067-5027</issn><issn>1527-974X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LAzEQhoMoflRvniX0bG2y2W12exCkfoLgpYK3ZZrOttHdpCTZFv0R_mbTVkXnMgMz7zO8vISccnbBWSH6r9Bo6Fv1wbjYIYc8S2SvkOnL7p_5gBx5_8oYHyQi2ycHgrNcMskOyefINg2aQK0Z0u414oLWCM5oM6OVdXQxB9eAsks90zUYhUPqULXOrTUGWwd1bGFl3RsFp-Y6oAqtQ79R1zDBeo2C6RKdRzp17SwCQAVtjafa0PFKh4DxkfXBd4_JXgW1x5Pv3iHPtzfj0X3v8enuYXT12FMiT0NP5BPJ2CRnKAbTNDrJ8kRKmUGSFbGQFQipyhkDqSrJoeCFggGvVJEWkKRCdMjllrtoJw1OVXQTnZQLpxtw76UFXf7fGD0vZ3ZZDjKeZQmLgPMtQDnrvcPqV8tZuc6l3ORSbnOJ52d___0e_wQhvgBC7I84</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Magge, Arjun</creator><creator>Sarker, Abeed</creator><creator>Nikfarjam, Azadeh</creator><creator>Gonzalez-Hernandez, Graciela</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7358-544X</orcidid></search><sort><creationdate>20190601</creationdate><title>Comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts"</title><author>Magge, Arjun ; Sarker, Abeed ; Nikfarjam, Azadeh ; Gonzalez-Hernandez, Graciela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-38b700b80e36d47075827775a259999e09ea4c800a7cf71a919ca61fc949a2433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Correspondence</topic><topic>Data Mining - methods</topic><topic>Datasets as Topic</topic><topic>Deep Learning</topic><topic>Drug-Related Side Effects and Adverse Reactions</topic><topic>Humans</topic><topic>Natural Language Processing</topic><topic>Neural Networks, Computer</topic><topic>Pharmacovigilance</topic><topic>Social Media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magge, Arjun</creatorcontrib><creatorcontrib>Sarker, Abeed</creatorcontrib><creatorcontrib>Nikfarjam, Azadeh</creatorcontrib><creatorcontrib>Gonzalez-Hernandez, Graciela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magge, Arjun</au><au>Sarker, Abeed</au><au>Nikfarjam, Azadeh</au><au>Gonzalez-Hernandez, Graciela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts"</atitle><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle><addtitle>J Am Med Inform Assoc</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>26</volume><issue>6</issue><spage>577</spage><epage>579</epage><pages>577-579</pages><issn>1527-974X</issn><issn>1067-5027</issn><eissn>1527-974X</eissn><cop>England</cop><pub>Oxford University Press</pub><pmid>31087070</pmid><doi>10.1093/jamia/ocz013</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-7358-544X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1527-974X |
ispartof | Journal of the American Medical Informatics Association : JAMIA, 2019-06, Vol.26 (6), p.577-579 |
issn | 1527-974X 1067-5027 1527-974X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515520 |
source | Open Access: PubMed Central; Oxford Journals Online |
subjects | Correspondence Data Mining - methods Datasets as Topic Deep Learning Drug-Related Side Effects and Adverse Reactions Humans Natural Language Processing Neural Networks, Computer Pharmacovigilance Social Media |
title | Comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts" |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comment%20on:%20%22Deep%20learning%20for%20pharmacovigilance:%20recurrent%20neural%20network%20architectures%20for%20labeling%20adverse%20drug%20reactions%20in%20Twitter%20posts%22&rft.jtitle=Journal%20of%20the%20American%20Medical%20Informatics%20Association%20:%20JAMIA&rft.au=Magge,%20Arjun&rft.date=2019-06-01&rft.volume=26&rft.issue=6&rft.spage=577&rft.epage=579&rft.pages=577-579&rft.issn=1527-974X&rft.eissn=1527-974X&rft_id=info:doi/10.1093/jamia/ocz013&rft_dat=%3Cpubmed_cross%3E31087070%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-38b700b80e36d47075827775a259999e09ea4c800a7cf71a919ca61fc949a2433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31087070&rfr_iscdi=true |