Loading…

Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode

High theoretical capacity and low-cost copper sulfide (Cu S)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (Na S) i...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2019-04, Vol.12 (8), p.1324
Main Authors: Kang, Chiwon, Lee, Yongwoo, Kim, Ilhwan, Hyun, Seungmin, Lee, Tae Hoon, Yun, Soyeong, Yoon, Won-Sub, Moon, Youngkwang, Lee, Jinkee, Kim, Sunkook, Lee, Hoo-Jeong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73
cites cdi_FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73
container_end_page
container_issue 8
container_start_page 1324
container_title Materials
container_volume 12
creator Kang, Chiwon
Lee, Yongwoo
Kim, Ilhwan
Hyun, Seungmin
Lee, Tae Hoon
Yun, Soyeong
Yoon, Won-Sub
Moon, Youngkwang
Lee, Jinkee
Kim, Sunkook
Lee, Hoo-Jeong
description High theoretical capacity and low-cost copper sulfide (Cu S)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (Na S) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous Cu S with a large surface area embedded in the MOF-derived carbon network (Cu S-C) through a two-step process of sulfurization and carbonization via H S gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the Cu S-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous Cu S-C/C core/shell anode materials than that of pure Cu S-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the Cu S-C to accommodate the volume variation of the Cu S-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of Na S into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the Cu S-C/C structure will be a promising anode material for large-scale and advanced SIBs.
doi_str_mv 10.3390/ma12081324
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548650747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73</originalsourceid><addsrcrecordid>eNpdkcFu1DAURSMEolXphg9AltggpIDtxI6zQSpDSysNdFFYWy_2y4xLYg-OM2i-hZ_Fw5RS8MbWvUfXz75F8ZzRN1XV0rcjME4Vq3j9qDhmbStL1tb14wfno-J0mm5pXlXFFG-fFkcVo0wJKY-Ln5dutR525LzvnXHoE_kMPhiIXfBkESA5vyJL2GEkWUhr_O1PKc4mzRFtZjabbN7MQ-8slp8wwUCu4wq8M-Qiwog_QvxGPmB02z1-SO5DJGd2C95k7SZYN4_lVdbfQ0oYd-TMB4vPiic9DBOe3u0nxdeL8y-Ly3J5_fFqcbYsTU1lKkF2HQrDKQNU1BqrGkt7aYXsu062wnJVW1AGqe2w5VJJJtumkTUwYQQ01Unx7pC7mbsRrcm_EGHQm-hGiDsdwOl_He_WehW2WgompFI54NVdQAzfZ5ySHt1kcBjAY5gnzTkTlDe12t_18j_0NszR5-dpLmolBW3qPfX6QJkYpilifz8Mo3pfu_5be4ZfPBz_Hv1TcvUL706qiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548650747</pqid></control><display><type>article</type><title>Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kang, Chiwon ; Lee, Yongwoo ; Kim, Ilhwan ; Hyun, Seungmin ; Lee, Tae Hoon ; Yun, Soyeong ; Yoon, Won-Sub ; Moon, Youngkwang ; Lee, Jinkee ; Kim, Sunkook ; Lee, Hoo-Jeong</creator><creatorcontrib>Kang, Chiwon ; Lee, Yongwoo ; Kim, Ilhwan ; Hyun, Seungmin ; Lee, Tae Hoon ; Yun, Soyeong ; Yoon, Won-Sub ; Moon, Youngkwang ; Lee, Jinkee ; Kim, Sunkook ; Lee, Hoo-Jeong</creatorcontrib><description>High theoretical capacity and low-cost copper sulfide (Cu S)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (Na S) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous Cu S with a large surface area embedded in the MOF-derived carbon network (Cu S-C) through a two-step process of sulfurization and carbonization via H S gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the Cu S-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous Cu S-C/C core/shell anode materials than that of pure Cu S-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the Cu S-C to accommodate the volume variation of the Cu S-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of Na S into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the Cu S-C/C structure will be a promising anode material for large-scale and advanced SIBs.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12081324</identifier><identifier>PMID: 31018566</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anodic dissolution ; Batteries ; Carbon ; Chemical properties ; Copper sulfides ; Cycles ; Dissolution ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Graphene ; High resolution electron microscopy ; Hydrogen sulfide ; Metal-organic frameworks ; Microscopy ; Plasma enhanced chemical vapor deposition ; Rechargeable batteries ; Shell anodes ; Sodium ; Sodium sulfide ; Sodium-ion batteries ; Spectrum analysis ; Sulfur ; Sulfurization</subject><ispartof>Materials, 2019-04, Vol.12 (8), p.1324</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73</citedby><cites>FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73</cites><orcidid>0000-0003-1747-4539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548650747/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548650747?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31018566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Chiwon</creatorcontrib><creatorcontrib>Lee, Yongwoo</creatorcontrib><creatorcontrib>Kim, Ilhwan</creatorcontrib><creatorcontrib>Hyun, Seungmin</creatorcontrib><creatorcontrib>Lee, Tae Hoon</creatorcontrib><creatorcontrib>Yun, Soyeong</creatorcontrib><creatorcontrib>Yoon, Won-Sub</creatorcontrib><creatorcontrib>Moon, Youngkwang</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Kim, Sunkook</creatorcontrib><creatorcontrib>Lee, Hoo-Jeong</creatorcontrib><title>Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>High theoretical capacity and low-cost copper sulfide (Cu S)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (Na S) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous Cu S with a large surface area embedded in the MOF-derived carbon network (Cu S-C) through a two-step process of sulfurization and carbonization via H S gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the Cu S-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous Cu S-C/C core/shell anode materials than that of pure Cu S-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the Cu S-C to accommodate the volume variation of the Cu S-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of Na S into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the Cu S-C/C structure will be a promising anode material for large-scale and advanced SIBs.</description><subject>Anodic dissolution</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Chemical properties</subject><subject>Copper sulfides</subject><subject>Cycles</subject><subject>Dissolution</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Graphene</subject><subject>High resolution electron microscopy</subject><subject>Hydrogen sulfide</subject><subject>Metal-organic frameworks</subject><subject>Microscopy</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Rechargeable batteries</subject><subject>Shell anodes</subject><subject>Sodium</subject><subject>Sodium sulfide</subject><subject>Sodium-ion batteries</subject><subject>Spectrum analysis</subject><subject>Sulfur</subject><subject>Sulfurization</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkcFu1DAURSMEolXphg9AltggpIDtxI6zQSpDSysNdFFYWy_2y4xLYg-OM2i-hZ_Fw5RS8MbWvUfXz75F8ZzRN1XV0rcjME4Vq3j9qDhmbStL1tb14wfno-J0mm5pXlXFFG-fFkcVo0wJKY-Ln5dutR525LzvnXHoE_kMPhiIXfBkESA5vyJL2GEkWUhr_O1PKc4mzRFtZjabbN7MQ-8slp8wwUCu4wq8M-Qiwog_QvxGPmB02z1-SO5DJGd2C95k7SZYN4_lVdbfQ0oYd-TMB4vPiic9DBOe3u0nxdeL8y-Ly3J5_fFqcbYsTU1lKkF2HQrDKQNU1BqrGkt7aYXsu062wnJVW1AGqe2w5VJJJtumkTUwYQQ01Unx7pC7mbsRrcm_EGHQm-hGiDsdwOl_He_WehW2WgompFI54NVdQAzfZ5ySHt1kcBjAY5gnzTkTlDe12t_18j_0NszR5-dpLmolBW3qPfX6QJkYpilifz8Mo3pfu_5be4ZfPBz_Hv1TcvUL706qiQ</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Kang, Chiwon</creator><creator>Lee, Yongwoo</creator><creator>Kim, Ilhwan</creator><creator>Hyun, Seungmin</creator><creator>Lee, Tae Hoon</creator><creator>Yun, Soyeong</creator><creator>Yoon, Won-Sub</creator><creator>Moon, Youngkwang</creator><creator>Lee, Jinkee</creator><creator>Kim, Sunkook</creator><creator>Lee, Hoo-Jeong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1747-4539</orcidid></search><sort><creationdate>20190423</creationdate><title>Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode</title><author>Kang, Chiwon ; Lee, Yongwoo ; Kim, Ilhwan ; Hyun, Seungmin ; Lee, Tae Hoon ; Yun, Soyeong ; Yoon, Won-Sub ; Moon, Youngkwang ; Lee, Jinkee ; Kim, Sunkook ; Lee, Hoo-Jeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodic dissolution</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Chemical properties</topic><topic>Copper sulfides</topic><topic>Cycles</topic><topic>Dissolution</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Graphene</topic><topic>High resolution electron microscopy</topic><topic>Hydrogen sulfide</topic><topic>Metal-organic frameworks</topic><topic>Microscopy</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Rechargeable batteries</topic><topic>Shell anodes</topic><topic>Sodium</topic><topic>Sodium sulfide</topic><topic>Sodium-ion batteries</topic><topic>Spectrum analysis</topic><topic>Sulfur</topic><topic>Sulfurization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Chiwon</creatorcontrib><creatorcontrib>Lee, Yongwoo</creatorcontrib><creatorcontrib>Kim, Ilhwan</creatorcontrib><creatorcontrib>Hyun, Seungmin</creatorcontrib><creatorcontrib>Lee, Tae Hoon</creatorcontrib><creatorcontrib>Yun, Soyeong</creatorcontrib><creatorcontrib>Yoon, Won-Sub</creatorcontrib><creatorcontrib>Moon, Youngkwang</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Kim, Sunkook</creatorcontrib><creatorcontrib>Lee, Hoo-Jeong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Chiwon</au><au>Lee, Yongwoo</au><au>Kim, Ilhwan</au><au>Hyun, Seungmin</au><au>Lee, Tae Hoon</au><au>Yun, Soyeong</au><au>Yoon, Won-Sub</au><au>Moon, Youngkwang</au><au>Lee, Jinkee</au><au>Kim, Sunkook</au><au>Lee, Hoo-Jeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-04-23</date><risdate>2019</risdate><volume>12</volume><issue>8</issue><spage>1324</spage><pages>1324-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>High theoretical capacity and low-cost copper sulfide (Cu S)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (Na S) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous Cu S with a large surface area embedded in the MOF-derived carbon network (Cu S-C) through a two-step process of sulfurization and carbonization via H S gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the Cu S-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous Cu S-C/C core/shell anode materials than that of pure Cu S-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the Cu S-C to accommodate the volume variation of the Cu S-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of Na S into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the Cu S-C/C structure will be a promising anode material for large-scale and advanced SIBs.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31018566</pmid><doi>10.3390/ma12081324</doi><orcidid>https://orcid.org/0000-0003-1747-4539</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-04, Vol.12 (8), p.1324
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515688
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Anodic dissolution
Batteries
Carbon
Chemical properties
Copper sulfides
Cycles
Dissolution
Electrical resistivity
Electrochemical analysis
Electrode materials
Electrodes
Electrolytes
Graphene
High resolution electron microscopy
Hydrogen sulfide
Metal-organic frameworks
Microscopy
Plasma enhanced chemical vapor deposition
Rechargeable batteries
Shell anodes
Sodium
Sodium sulfide
Sodium-ion batteries
Spectrum analysis
Sulfur
Sulfurization
title Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Nanocarbon%20Coating%20Layer%20on%20the%20Nanostructured%20Copper%20Sulfide-Metal%20Organic%20Framework%20Derived%20Carbon%20for%20Advanced%20Sodium-Ion%20Battery%20Anode&rft.jtitle=Materials&rft.au=Kang,%20Chiwon&rft.date=2019-04-23&rft.volume=12&rft.issue=8&rft.spage=1324&rft.pages=1324-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12081324&rft_dat=%3Cproquest_pubme%3E2548650747%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548650747&rft_id=info:pmid/31018566&rfr_iscdi=true