Loading…
Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode
High theoretical capacity and low-cost copper sulfide (Cu S)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (Na S) i...
Saved in:
Published in: | Materials 2019-04, Vol.12 (8), p.1324 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73 |
container_end_page | |
container_issue | 8 |
container_start_page | 1324 |
container_title | Materials |
container_volume | 12 |
creator | Kang, Chiwon Lee, Yongwoo Kim, Ilhwan Hyun, Seungmin Lee, Tae Hoon Yun, Soyeong Yoon, Won-Sub Moon, Youngkwang Lee, Jinkee Kim, Sunkook Lee, Hoo-Jeong |
description | High theoretical capacity and low-cost copper sulfide (Cu
S)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (Na
S) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous Cu
S with a large surface area embedded in the MOF-derived carbon network (Cu
S-C) through a two-step process of sulfurization and carbonization via H
S gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the Cu
S-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous Cu
S-C/C core/shell anode materials than that of pure Cu
S-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the Cu
S-C to accommodate the volume variation of the Cu
S-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of Na
S into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the Cu
S-C/C structure will be a promising anode material for large-scale and advanced SIBs. |
doi_str_mv | 10.3390/ma12081324 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548650747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73</originalsourceid><addsrcrecordid>eNpdkcFu1DAURSMEolXphg9AltggpIDtxI6zQSpDSysNdFFYWy_2y4xLYg-OM2i-hZ_Fw5RS8MbWvUfXz75F8ZzRN1XV0rcjME4Vq3j9qDhmbStL1tb14wfno-J0mm5pXlXFFG-fFkcVo0wJKY-Ln5dutR525LzvnXHoE_kMPhiIXfBkESA5vyJL2GEkWUhr_O1PKc4mzRFtZjabbN7MQ-8slp8wwUCu4wq8M-Qiwog_QvxGPmB02z1-SO5DJGd2C95k7SZYN4_lVdbfQ0oYd-TMB4vPiic9DBOe3u0nxdeL8y-Ly3J5_fFqcbYsTU1lKkF2HQrDKQNU1BqrGkt7aYXsu062wnJVW1AGqe2w5VJJJtumkTUwYQQ01Unx7pC7mbsRrcm_EGHQm-hGiDsdwOl_He_WehW2WgompFI54NVdQAzfZ5ySHt1kcBjAY5gnzTkTlDe12t_18j_0NszR5-dpLmolBW3qPfX6QJkYpilifz8Mo3pfu_5be4ZfPBz_Hv1TcvUL706qiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548650747</pqid></control><display><type>article</type><title>Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kang, Chiwon ; Lee, Yongwoo ; Kim, Ilhwan ; Hyun, Seungmin ; Lee, Tae Hoon ; Yun, Soyeong ; Yoon, Won-Sub ; Moon, Youngkwang ; Lee, Jinkee ; Kim, Sunkook ; Lee, Hoo-Jeong</creator><creatorcontrib>Kang, Chiwon ; Lee, Yongwoo ; Kim, Ilhwan ; Hyun, Seungmin ; Lee, Tae Hoon ; Yun, Soyeong ; Yoon, Won-Sub ; Moon, Youngkwang ; Lee, Jinkee ; Kim, Sunkook ; Lee, Hoo-Jeong</creatorcontrib><description>High theoretical capacity and low-cost copper sulfide (Cu
S)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (Na
S) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous Cu
S with a large surface area embedded in the MOF-derived carbon network (Cu
S-C) through a two-step process of sulfurization and carbonization via H
S gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the Cu
S-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous Cu
S-C/C core/shell anode materials than that of pure Cu
S-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the Cu
S-C to accommodate the volume variation of the Cu
S-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of Na
S into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the Cu
S-C/C structure will be a promising anode material for large-scale and advanced SIBs.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12081324</identifier><identifier>PMID: 31018566</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anodic dissolution ; Batteries ; Carbon ; Chemical properties ; Copper sulfides ; Cycles ; Dissolution ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Graphene ; High resolution electron microscopy ; Hydrogen sulfide ; Metal-organic frameworks ; Microscopy ; Plasma enhanced chemical vapor deposition ; Rechargeable batteries ; Shell anodes ; Sodium ; Sodium sulfide ; Sodium-ion batteries ; Spectrum analysis ; Sulfur ; Sulfurization</subject><ispartof>Materials, 2019-04, Vol.12 (8), p.1324</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73</citedby><cites>FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73</cites><orcidid>0000-0003-1747-4539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548650747/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548650747?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31018566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Chiwon</creatorcontrib><creatorcontrib>Lee, Yongwoo</creatorcontrib><creatorcontrib>Kim, Ilhwan</creatorcontrib><creatorcontrib>Hyun, Seungmin</creatorcontrib><creatorcontrib>Lee, Tae Hoon</creatorcontrib><creatorcontrib>Yun, Soyeong</creatorcontrib><creatorcontrib>Yoon, Won-Sub</creatorcontrib><creatorcontrib>Moon, Youngkwang</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Kim, Sunkook</creatorcontrib><creatorcontrib>Lee, Hoo-Jeong</creatorcontrib><title>Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>High theoretical capacity and low-cost copper sulfide (Cu
S)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (Na
S) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous Cu
S with a large surface area embedded in the MOF-derived carbon network (Cu
S-C) through a two-step process of sulfurization and carbonization via H
S gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the Cu
S-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous Cu
S-C/C core/shell anode materials than that of pure Cu
S-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the Cu
S-C to accommodate the volume variation of the Cu
S-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of Na
S into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the Cu
S-C/C structure will be a promising anode material for large-scale and advanced SIBs.</description><subject>Anodic dissolution</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Chemical properties</subject><subject>Copper sulfides</subject><subject>Cycles</subject><subject>Dissolution</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Graphene</subject><subject>High resolution electron microscopy</subject><subject>Hydrogen sulfide</subject><subject>Metal-organic frameworks</subject><subject>Microscopy</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Rechargeable batteries</subject><subject>Shell anodes</subject><subject>Sodium</subject><subject>Sodium sulfide</subject><subject>Sodium-ion batteries</subject><subject>Spectrum analysis</subject><subject>Sulfur</subject><subject>Sulfurization</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkcFu1DAURSMEolXphg9AltggpIDtxI6zQSpDSysNdFFYWy_2y4xLYg-OM2i-hZ_Fw5RS8MbWvUfXz75F8ZzRN1XV0rcjME4Vq3j9qDhmbStL1tb14wfno-J0mm5pXlXFFG-fFkcVo0wJKY-Ln5dutR525LzvnXHoE_kMPhiIXfBkESA5vyJL2GEkWUhr_O1PKc4mzRFtZjabbN7MQ-8slp8wwUCu4wq8M-Qiwog_QvxGPmB02z1-SO5DJGd2C95k7SZYN4_lVdbfQ0oYd-TMB4vPiic9DBOe3u0nxdeL8y-Ly3J5_fFqcbYsTU1lKkF2HQrDKQNU1BqrGkt7aYXsu062wnJVW1AGqe2w5VJJJtumkTUwYQQ01Unx7pC7mbsRrcm_EGHQm-hGiDsdwOl_He_WehW2WgompFI54NVdQAzfZ5ySHt1kcBjAY5gnzTkTlDe12t_18j_0NszR5-dpLmolBW3qPfX6QJkYpilifz8Mo3pfu_5be4ZfPBz_Hv1TcvUL706qiQ</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Kang, Chiwon</creator><creator>Lee, Yongwoo</creator><creator>Kim, Ilhwan</creator><creator>Hyun, Seungmin</creator><creator>Lee, Tae Hoon</creator><creator>Yun, Soyeong</creator><creator>Yoon, Won-Sub</creator><creator>Moon, Youngkwang</creator><creator>Lee, Jinkee</creator><creator>Kim, Sunkook</creator><creator>Lee, Hoo-Jeong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1747-4539</orcidid></search><sort><creationdate>20190423</creationdate><title>Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode</title><author>Kang, Chiwon ; Lee, Yongwoo ; Kim, Ilhwan ; Hyun, Seungmin ; Lee, Tae Hoon ; Yun, Soyeong ; Yoon, Won-Sub ; Moon, Youngkwang ; Lee, Jinkee ; Kim, Sunkook ; Lee, Hoo-Jeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodic dissolution</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Chemical properties</topic><topic>Copper sulfides</topic><topic>Cycles</topic><topic>Dissolution</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Graphene</topic><topic>High resolution electron microscopy</topic><topic>Hydrogen sulfide</topic><topic>Metal-organic frameworks</topic><topic>Microscopy</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Rechargeable batteries</topic><topic>Shell anodes</topic><topic>Sodium</topic><topic>Sodium sulfide</topic><topic>Sodium-ion batteries</topic><topic>Spectrum analysis</topic><topic>Sulfur</topic><topic>Sulfurization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Chiwon</creatorcontrib><creatorcontrib>Lee, Yongwoo</creatorcontrib><creatorcontrib>Kim, Ilhwan</creatorcontrib><creatorcontrib>Hyun, Seungmin</creatorcontrib><creatorcontrib>Lee, Tae Hoon</creatorcontrib><creatorcontrib>Yun, Soyeong</creatorcontrib><creatorcontrib>Yoon, Won-Sub</creatorcontrib><creatorcontrib>Moon, Youngkwang</creatorcontrib><creatorcontrib>Lee, Jinkee</creatorcontrib><creatorcontrib>Kim, Sunkook</creatorcontrib><creatorcontrib>Lee, Hoo-Jeong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Chiwon</au><au>Lee, Yongwoo</au><au>Kim, Ilhwan</au><au>Hyun, Seungmin</au><au>Lee, Tae Hoon</au><au>Yun, Soyeong</au><au>Yoon, Won-Sub</au><au>Moon, Youngkwang</au><au>Lee, Jinkee</au><au>Kim, Sunkook</au><au>Lee, Hoo-Jeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-04-23</date><risdate>2019</risdate><volume>12</volume><issue>8</issue><spage>1324</spage><pages>1324-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>High theoretical capacity and low-cost copper sulfide (Cu
S)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (Na
S) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous Cu
S with a large surface area embedded in the MOF-derived carbon network (Cu
S-C) through a two-step process of sulfurization and carbonization via H
S gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the Cu
S-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous Cu
S-C/C core/shell anode materials than that of pure Cu
S-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the Cu
S-C to accommodate the volume variation of the Cu
S-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of Na
S into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the Cu
S-C/C structure will be a promising anode material for large-scale and advanced SIBs.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31018566</pmid><doi>10.3390/ma12081324</doi><orcidid>https://orcid.org/0000-0003-1747-4539</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2019-04, Vol.12 (8), p.1324 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515688 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Anodic dissolution Batteries Carbon Chemical properties Copper sulfides Cycles Dissolution Electrical resistivity Electrochemical analysis Electrode materials Electrodes Electrolytes Graphene High resolution electron microscopy Hydrogen sulfide Metal-organic frameworks Microscopy Plasma enhanced chemical vapor deposition Rechargeable batteries Shell anodes Sodium Sodium sulfide Sodium-ion batteries Spectrum analysis Sulfur Sulfurization |
title | Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Nanocarbon%20Coating%20Layer%20on%20the%20Nanostructured%20Copper%20Sulfide-Metal%20Organic%20Framework%20Derived%20Carbon%20for%20Advanced%20Sodium-Ion%20Battery%20Anode&rft.jtitle=Materials&rft.au=Kang,%20Chiwon&rft.date=2019-04-23&rft.volume=12&rft.issue=8&rft.spage=1324&rft.pages=1324-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12081324&rft_dat=%3Cproquest_pubme%3E2548650747%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-a6bbe5c201ae80dcd87d0f6d56fbb695d284da8ce0dbe926861697764a15c5a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548650747&rft_id=info:pmid/31018566&rfr_iscdi=true |