Loading…

Experimental and Numerical Simulation of the Formation of Cold Seep Carbonates in Marine Sediments

Cold seep emissions of low temperature fluid from the marine sediment basins are mainly comprised of methane and other hydrocarbons. A series of biogeochemical processes related to methane lead to the formation of authigenic carbonate minerals. In this study, a self-built experimental device was use...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2019-04, Vol.16 (8), p.1433
Main Authors: Ye, Tao, Jin, Guangrong, Wu, Daidai, Liu, And Lihua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cold seep emissions of low temperature fluid from the marine sediment basins are mainly comprised of methane and other hydrocarbons. A series of biogeochemical processes related to methane lead to the formation of authigenic carbonate minerals. In this study, a self-built experimental device was used to study the formation process of carbonate minerals under cold seep conditions. The concentrations of pore water chemicals, HCO and Ca at different heights of the reactor under flow conditions can be observed. According to the experimental results, the formation process of carbonate minerals under cold seep conditions was estimated, that 1 m carbonate growth needs 12,000 and 7000 years, respectively, under fast (5 mL·min ) and slow emission (1 mL·min ) conditions. Furthermore, TOUGHREACT was used to simulate the diagenesis process. A 1D unsteady react-transport model was developed, and the experimental data was used to constrain the simulation. The results of simulation show that the carbonates need 17,000 and 9700 years to grow 1 m under the condition of fast and slow flow scenarios, respectively. The results of this work will contribute to the study of foundation on the formation of authigenic minerals in cold seep areas, and for the physical properties of sedimentary media as well.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph16081433