Loading…

Biomedical applications of nanoflares: Targeted intracellular fluorescence probes

Nanoflares are intracellular probes consisting of oligonucleotides immobilized on various nanoparticles that can recognize intracellular nucleic acids or other analytes, thus releasing a fluorescent reporter dye. Single-stranded DNA (ssDNA) complementary to mRNA for a target gene is constructed cont...

Full description

Saved in:
Bibliographic Details
Published in:Nanomedicine 2019-04, Vol.17, p.342-358
Main Authors: Chenab, Karim Khanmohammadi, Eivazzadeh-Keihan, Reza, Maleki, Ali, Pashazadeh-Panahi, Paria, Hamblin, Michael R, Mokhtarzadeh, Ahad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-2ae07b91b89efb55025a0dc9c0f4847c4cca5f97ede43de8916b19d8255d8d893
cites cdi_FETCH-LOGICAL-c455t-2ae07b91b89efb55025a0dc9c0f4847c4cca5f97ede43de8916b19d8255d8d893
container_end_page 358
container_issue
container_start_page 342
container_title Nanomedicine
container_volume 17
creator Chenab, Karim Khanmohammadi
Eivazzadeh-Keihan, Reza
Maleki, Ali
Pashazadeh-Panahi, Paria
Hamblin, Michael R
Mokhtarzadeh, Ahad
description Nanoflares are intracellular probes consisting of oligonucleotides immobilized on various nanoparticles that can recognize intracellular nucleic acids or other analytes, thus releasing a fluorescent reporter dye. Single-stranded DNA (ssDNA) complementary to mRNA for a target gene is constructed containing a 3′-thiol for binding to gold nanoparticles. The ssDNA “recognition sequence” is prehybridized to a shorter DNA complement containing a fluorescent dye that is quenched. The functionalized gold nanoparticles are easily taken up into cells. When the ssDNA recognizes its complementary target, the fluorescent dye is released inside the cells. Different intracellular targets can be detected by nanoflares, such as mRNAs coding for genes over-expressed in cancer (epithelial-mesenchymal transition, oncogenes, thymidine kinase, telomerase, etc.), intracellular levels of ATP, pH values and inorganic ions can also be measured. Advantages include high transfection efficiency, enzymatic stability, good optical properties, biocompatibility, high selectivity and specificity. Multiplexed assays and FRET-based systems have been designed. Biomedical applications of nanoflares in biosensing. Nanoflares consist of oligonucleotides attached to gold nanoparticles that can release a fluorescent dye upon binding to their target. The dye excitation is wavelength matched to the plasmon resonance frequency of the nanoparticles. They are able to detect intracellular analytes such as mRNAs and ATP with high sensitivity, and can also respond to pH and metallic ions. [Display omitted]
doi_str_mv 10.1016/j.nano.2019.02.006
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6520197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1549963419300371</els_id><sourcerecordid>2187954784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2ae07b91b89efb55025a0dc9c0f4847c4cca5f97ede43de8916b19d8255d8d893</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVpaNKkX6CH4GMv645kyZZKCSRL8wcCIZCehSyNUy1ey5XsQL59ZDZZmktPGpg3P715Q8hXCiUFWn_flIMZQsmAqhJYCVB_IEdUcLVSNWcf93XFD8nnlDYAVQOgPpHDCiSreVMfkfsLH7bovDV9Ycaxz8Xkw5CK0BULvetNxPSjeDDxESd0hR-maCz2_Zw7RdfPIfctDhaLMYYW0wk56Eyf8Mvre0x-X_56WF-vbu-ubtbntyvLhZhWzCA0raKtVNi1QgATBpxVFjoueWO5tUZ0qkGHvHIoFa1bqpxkQjjppKqOydmOO85t3iBbyMZ6PUa_NfFZB-P1-87g_-jH8KRrsSTWZMC3V0AMf2dMk976tGxmBgxz0ozKRgneSJ6lbCe1MaQUsdt_Q0Evt9AbvaSlF7IGpvMt8tDpvwb3I2_hZ8HPnQBzTE8eo07WL0k6H9FO2gX_P_4LKn-d3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187954784</pqid></control><display><type>article</type><title>Biomedical applications of nanoflares: Targeted intracellular fluorescence probes</title><source>ScienceDirect Journals</source><creator>Chenab, Karim Khanmohammadi ; Eivazzadeh-Keihan, Reza ; Maleki, Ali ; Pashazadeh-Panahi, Paria ; Hamblin, Michael R ; Mokhtarzadeh, Ahad</creator><creatorcontrib>Chenab, Karim Khanmohammadi ; Eivazzadeh-Keihan, Reza ; Maleki, Ali ; Pashazadeh-Panahi, Paria ; Hamblin, Michael R ; Mokhtarzadeh, Ahad</creatorcontrib><description>Nanoflares are intracellular probes consisting of oligonucleotides immobilized on various nanoparticles that can recognize intracellular nucleic acids or other analytes, thus releasing a fluorescent reporter dye. Single-stranded DNA (ssDNA) complementary to mRNA for a target gene is constructed containing a 3′-thiol for binding to gold nanoparticles. The ssDNA “recognition sequence” is prehybridized to a shorter DNA complement containing a fluorescent dye that is quenched. The functionalized gold nanoparticles are easily taken up into cells. When the ssDNA recognizes its complementary target, the fluorescent dye is released inside the cells. Different intracellular targets can be detected by nanoflares, such as mRNAs coding for genes over-expressed in cancer (epithelial-mesenchymal transition, oncogenes, thymidine kinase, telomerase, etc.), intracellular levels of ATP, pH values and inorganic ions can also be measured. Advantages include high transfection efficiency, enzymatic stability, good optical properties, biocompatibility, high selectivity and specificity. Multiplexed assays and FRET-based systems have been designed. Biomedical applications of nanoflares in biosensing. Nanoflares consist of oligonucleotides attached to gold nanoparticles that can release a fluorescent dye upon binding to their target. The dye excitation is wavelength matched to the plasmon resonance frequency of the nanoparticles. They are able to detect intracellular analytes such as mRNAs and ATP with high sensitivity, and can also respond to pH and metallic ions. [Display omitted]</description><identifier>ISSN: 1549-9634</identifier><identifier>ISSN: 1549-9642</identifier><identifier>EISSN: 1549-9642</identifier><identifier>DOI: 10.1016/j.nano.2019.02.006</identifier><identifier>PMID: 30826476</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - analysis ; Animals ; ATP detection ; Biosensing Techniques - methods ; Cancer cell detection ; DNA, Single-Stranded - chemistry ; DNA, Single-Stranded - genetics ; Fluorescence Resonance Energy Transfer - methods ; Fluorescent Dyes - chemistry ; Gold - chemistry ; Humans ; Immobilized Nucleic Acids - chemistry ; Immobilized Nucleic Acids - genetics ; Inorganic ion detection ; Metal Nanoparticles - chemistry ; mRNA detection ; Nanoflares ; Neoplasms - diagnosis ; Neoplasms - genetics ; Nucleic acid hybridization ; RNA, Messenger - analysis ; RNA, Messenger - genetics ; Targeted intracellular fluorescence probes</subject><ispartof>Nanomedicine, 2019-04, Vol.17, p.342-358</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2ae07b91b89efb55025a0dc9c0f4847c4cca5f97ede43de8916b19d8255d8d893</citedby><cites>FETCH-LOGICAL-c455t-2ae07b91b89efb55025a0dc9c0f4847c4cca5f97ede43de8916b19d8255d8d893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30826476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chenab, Karim Khanmohammadi</creatorcontrib><creatorcontrib>Eivazzadeh-Keihan, Reza</creatorcontrib><creatorcontrib>Maleki, Ali</creatorcontrib><creatorcontrib>Pashazadeh-Panahi, Paria</creatorcontrib><creatorcontrib>Hamblin, Michael R</creatorcontrib><creatorcontrib>Mokhtarzadeh, Ahad</creatorcontrib><title>Biomedical applications of nanoflares: Targeted intracellular fluorescence probes</title><title>Nanomedicine</title><addtitle>Nanomedicine</addtitle><description>Nanoflares are intracellular probes consisting of oligonucleotides immobilized on various nanoparticles that can recognize intracellular nucleic acids or other analytes, thus releasing a fluorescent reporter dye. Single-stranded DNA (ssDNA) complementary to mRNA for a target gene is constructed containing a 3′-thiol for binding to gold nanoparticles. The ssDNA “recognition sequence” is prehybridized to a shorter DNA complement containing a fluorescent dye that is quenched. The functionalized gold nanoparticles are easily taken up into cells. When the ssDNA recognizes its complementary target, the fluorescent dye is released inside the cells. Different intracellular targets can be detected by nanoflares, such as mRNAs coding for genes over-expressed in cancer (epithelial-mesenchymal transition, oncogenes, thymidine kinase, telomerase, etc.), intracellular levels of ATP, pH values and inorganic ions can also be measured. Advantages include high transfection efficiency, enzymatic stability, good optical properties, biocompatibility, high selectivity and specificity. Multiplexed assays and FRET-based systems have been designed. Biomedical applications of nanoflares in biosensing. Nanoflares consist of oligonucleotides attached to gold nanoparticles that can release a fluorescent dye upon binding to their target. The dye excitation is wavelength matched to the plasmon resonance frequency of the nanoparticles. They are able to detect intracellular analytes such as mRNAs and ATP with high sensitivity, and can also respond to pH and metallic ions. [Display omitted]</description><subject>Adenosine Triphosphate - analysis</subject><subject>Animals</subject><subject>ATP detection</subject><subject>Biosensing Techniques - methods</subject><subject>Cancer cell detection</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA, Single-Stranded - genetics</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Immobilized Nucleic Acids - chemistry</subject><subject>Immobilized Nucleic Acids - genetics</subject><subject>Inorganic ion detection</subject><subject>Metal Nanoparticles - chemistry</subject><subject>mRNA detection</subject><subject>Nanoflares</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - genetics</subject><subject>Nucleic acid hybridization</subject><subject>RNA, Messenger - analysis</subject><subject>RNA, Messenger - genetics</subject><subject>Targeted intracellular fluorescence probes</subject><issn>1549-9634</issn><issn>1549-9642</issn><issn>1549-9642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU9r3DAQxUVpaNKkX6CH4GMv645kyZZKCSRL8wcCIZCehSyNUy1ey5XsQL59ZDZZmktPGpg3P715Q8hXCiUFWn_flIMZQsmAqhJYCVB_IEdUcLVSNWcf93XFD8nnlDYAVQOgPpHDCiSreVMfkfsLH7bovDV9Ycaxz8Xkw5CK0BULvetNxPSjeDDxESd0hR-maCz2_Zw7RdfPIfctDhaLMYYW0wk56Eyf8Mvre0x-X_56WF-vbu-ubtbntyvLhZhWzCA0raKtVNi1QgATBpxVFjoueWO5tUZ0qkGHvHIoFa1bqpxkQjjppKqOydmOO85t3iBbyMZ6PUa_NfFZB-P1-87g_-jH8KRrsSTWZMC3V0AMf2dMk976tGxmBgxz0ozKRgneSJ6lbCe1MaQUsdt_Q0Evt9AbvaSlF7IGpvMt8tDpvwb3I2_hZ8HPnQBzTE8eo07WL0k6H9FO2gX_P_4LKn-d3w</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Chenab, Karim Khanmohammadi</creator><creator>Eivazzadeh-Keihan, Reza</creator><creator>Maleki, Ali</creator><creator>Pashazadeh-Panahi, Paria</creator><creator>Hamblin, Michael R</creator><creator>Mokhtarzadeh, Ahad</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190401</creationdate><title>Biomedical applications of nanoflares: Targeted intracellular fluorescence probes</title><author>Chenab, Karim Khanmohammadi ; Eivazzadeh-Keihan, Reza ; Maleki, Ali ; Pashazadeh-Panahi, Paria ; Hamblin, Michael R ; Mokhtarzadeh, Ahad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2ae07b91b89efb55025a0dc9c0f4847c4cca5f97ede43de8916b19d8255d8d893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine Triphosphate - analysis</topic><topic>Animals</topic><topic>ATP detection</topic><topic>Biosensing Techniques - methods</topic><topic>Cancer cell detection</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA, Single-Stranded - genetics</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Immobilized Nucleic Acids - chemistry</topic><topic>Immobilized Nucleic Acids - genetics</topic><topic>Inorganic ion detection</topic><topic>Metal Nanoparticles - chemistry</topic><topic>mRNA detection</topic><topic>Nanoflares</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - genetics</topic><topic>Nucleic acid hybridization</topic><topic>RNA, Messenger - analysis</topic><topic>RNA, Messenger - genetics</topic><topic>Targeted intracellular fluorescence probes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chenab, Karim Khanmohammadi</creatorcontrib><creatorcontrib>Eivazzadeh-Keihan, Reza</creatorcontrib><creatorcontrib>Maleki, Ali</creatorcontrib><creatorcontrib>Pashazadeh-Panahi, Paria</creatorcontrib><creatorcontrib>Hamblin, Michael R</creatorcontrib><creatorcontrib>Mokhtarzadeh, Ahad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chenab, Karim Khanmohammadi</au><au>Eivazzadeh-Keihan, Reza</au><au>Maleki, Ali</au><au>Pashazadeh-Panahi, Paria</au><au>Hamblin, Michael R</au><au>Mokhtarzadeh, Ahad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomedical applications of nanoflares: Targeted intracellular fluorescence probes</atitle><jtitle>Nanomedicine</jtitle><addtitle>Nanomedicine</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>17</volume><spage>342</spage><epage>358</epage><pages>342-358</pages><issn>1549-9634</issn><issn>1549-9642</issn><eissn>1549-9642</eissn><abstract>Nanoflares are intracellular probes consisting of oligonucleotides immobilized on various nanoparticles that can recognize intracellular nucleic acids or other analytes, thus releasing a fluorescent reporter dye. Single-stranded DNA (ssDNA) complementary to mRNA for a target gene is constructed containing a 3′-thiol for binding to gold nanoparticles. The ssDNA “recognition sequence” is prehybridized to a shorter DNA complement containing a fluorescent dye that is quenched. The functionalized gold nanoparticles are easily taken up into cells. When the ssDNA recognizes its complementary target, the fluorescent dye is released inside the cells. Different intracellular targets can be detected by nanoflares, such as mRNAs coding for genes over-expressed in cancer (epithelial-mesenchymal transition, oncogenes, thymidine kinase, telomerase, etc.), intracellular levels of ATP, pH values and inorganic ions can also be measured. Advantages include high transfection efficiency, enzymatic stability, good optical properties, biocompatibility, high selectivity and specificity. Multiplexed assays and FRET-based systems have been designed. Biomedical applications of nanoflares in biosensing. Nanoflares consist of oligonucleotides attached to gold nanoparticles that can release a fluorescent dye upon binding to their target. The dye excitation is wavelength matched to the plasmon resonance frequency of the nanoparticles. They are able to detect intracellular analytes such as mRNAs and ATP with high sensitivity, and can also respond to pH and metallic ions. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30826476</pmid><doi>10.1016/j.nano.2019.02.006</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9634
ispartof Nanomedicine, 2019-04, Vol.17, p.342-358
issn 1549-9634
1549-9642
1549-9642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6520197
source ScienceDirect Journals
subjects Adenosine Triphosphate - analysis
Animals
ATP detection
Biosensing Techniques - methods
Cancer cell detection
DNA, Single-Stranded - chemistry
DNA, Single-Stranded - genetics
Fluorescence Resonance Energy Transfer - methods
Fluorescent Dyes - chemistry
Gold - chemistry
Humans
Immobilized Nucleic Acids - chemistry
Immobilized Nucleic Acids - genetics
Inorganic ion detection
Metal Nanoparticles - chemistry
mRNA detection
Nanoflares
Neoplasms - diagnosis
Neoplasms - genetics
Nucleic acid hybridization
RNA, Messenger - analysis
RNA, Messenger - genetics
Targeted intracellular fluorescence probes
title Biomedical applications of nanoflares: Targeted intracellular fluorescence probes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomedical%20applications%20of%20nanoflares:%20Targeted%20intracellular%20fluorescence%20probes&rft.jtitle=Nanomedicine&rft.au=Chenab,%20Karim%20Khanmohammadi&rft.date=2019-04-01&rft.volume=17&rft.spage=342&rft.epage=358&rft.pages=342-358&rft.issn=1549-9634&rft.eissn=1549-9642&rft_id=info:doi/10.1016/j.nano.2019.02.006&rft_dat=%3Cproquest_pubme%3E2187954784%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-2ae07b91b89efb55025a0dc9c0f4847c4cca5f97ede43de8916b19d8255d8d893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187954784&rft_id=info:pmid/30826476&rfr_iscdi=true