Loading…

LSPR-based cholesterol biosensor using a tapered optical fiber structure

Accurate cholesterol level measurement plays an important role in the diagnosis of severe diseases such as cardiovascular diseases, hypertension, anemia, myxedemia, hyperthyroidism, coronary artery illness. Traditionally, electrochemical sensors have been employed to detect the cholesterol level. Ho...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical optics express 2019-05, Vol.10 (5), p.2150-2160
Main Authors: Kumar, Santosh, Kaushik, Brajesh Kumar, Singh, Ragini, Chen, Nan-Kuang, Yang, Qing Shan, Zhang, Xia, Wang, Wenjun, Zhang, Bingyuan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate cholesterol level measurement plays an important role in the diagnosis of severe diseases such as cardiovascular diseases, hypertension, anemia, myxedemia, hyperthyroidism, coronary artery illness. Traditionally, electrochemical sensors have been employed to detect the cholesterol level. However, these sensors have limitations in terms of sensitivity and selectivity. In this paper, a localized surface plasmon resonance (LSPR) -based biosensor is demonstrated that accurately detects and measures the concentration of cholesterol. In the present study, a tapered optical fiber-based sensor probe is developed using gold nanoparticles (AuNPs) and cholesterol oxidase (ChOx) to increase the sensitivity and selectivity of the sensor. Synthesized AuNPs were characterized by UV-visible spectrophotometer, transmission electron microscope (TEM), and energy dispersive X-ray spectroscopy (EDS). Further, coating of AuNPs over fiber was confirmed by scanning electron microscope (SEM). The developed sensor demonstrates for a clinically important cholesterol range of 0 to 10 mM, and the limit of detection is found to be 53.1 nM.
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.10.002150