Loading…

Kinetics of Transient Protein Complexes Determined via Diffusion-Independent Microfluidic Mixing and Fluorescence Stoichiometry

Low-affinity protein complexes and their transient states are difficult to measure in single-molecule experiments because of their low population at low concentrations. A prominent solution to this problem is the use of microfluidic mixing devices, which rely on diffusion-based mixing. This is not i...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2018-12, Vol.122 (49), p.11554-11560
Main Authors: Hellenkamp, Björn, Thurn, Johann, Stadlmeier, Martina, Hugel, Thorsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a433t-8a2716a6b4941f55d93585478ce85e632f44364c0071bb460ed30c36f85edcd3
cites cdi_FETCH-LOGICAL-a433t-8a2716a6b4941f55d93585478ce85e632f44364c0071bb460ed30c36f85edcd3
container_end_page 11560
container_issue 49
container_start_page 11554
container_title The journal of physical chemistry. B
container_volume 122
creator Hellenkamp, Björn
Thurn, Johann
Stadlmeier, Martina
Hugel, Thorsten
description Low-affinity protein complexes and their transient states are difficult to measure in single-molecule experiments because of their low population at low concentrations. A prominent solution to this problem is the use of microfluidic mixing devices, which rely on diffusion-based mixing. This is not ideal for multiprotein complexes, as the single-molecule fluorescence signal is dominated by the already dissociated species. Here, we designed a microfluidic device with mixing structures for fast and homogeneous mixing of components with varying diffusion coefficients and for fluorescence measurements at a defined single-molecule concentration. This enables direct measurement of dissociation rates at a broad range of timescales from a few milliseconds to several minutes. This further allows us to measure structural properties and stoichiometries of protein complexes with large equilibrium dissociation constants (K D’s) of 5 μM and above. We used the platform to measure structural properties and dissociation rates of heat shock protein 90 (Hsp90) dimers and found at least two dissociation rates which depend on the nucleotide state. Finally, we demonstrate the capability for measuring also equilibrium dissociation constants, resulting in the determination of both the kinetics and thermodynamics of the system under investigation.
doi_str_mv 10.1021/acs.jpcb.8b07437
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6526119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125296515</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-8a2716a6b4941f55d93585478ce85e632f44364c0071bb460ed30c36f85edcd3</originalsourceid><addsrcrecordid>eNp1UU1v1DAUtBAVLYU7J-QjB7LY8UeyFyS0pVBRBBJ7txznuXWV2MFOqvbUv95Xdqng0IM_38z4eYaQN5ytOKv5B-vK6mpy3artWCNF84wccVWzCkfzfL_XnOlD8rKUK8ZqVbf6BTkUTCjOuTgid99ChDm4QpOn22xjCRBn-jOnGUKkmzROA9xAoScwQx4R3NPrYOlJ8H4pIcXqLPYwAU5I-x5cTn5YQh8cHm5CvKA29vR0WFKG4iA6oL_mFNxlSCPM-fYVOfB2KPB6vx6T7enn7eZrdf7jy9nm03llpRBz1dq64drqTq4l90r1a6FaJZvWQatAi9pLKbR0jDW866Rm0AvmhPZY7V0vjsnHney0dCPeYLPZDmbKYbT51iQbzP-VGC7NRbo2WtWa8zUKvNsL5PR7gTKbMeB_hsFGSEsxNUdv11pxhVC2g6IXpWTwj89wZh5iMxibeYjN7GNDytt_23sk_M0JAe93gD_UtOSIZj2tdw_3Madq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125296515</pqid></control><display><type>article</type><title>Kinetics of Transient Protein Complexes Determined via Diffusion-Independent Microfluidic Mixing and Fluorescence Stoichiometry</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hellenkamp, Björn ; Thurn, Johann ; Stadlmeier, Martina ; Hugel, Thorsten</creator><creatorcontrib>Hellenkamp, Björn ; Thurn, Johann ; Stadlmeier, Martina ; Hugel, Thorsten</creatorcontrib><description>Low-affinity protein complexes and their transient states are difficult to measure in single-molecule experiments because of their low population at low concentrations. A prominent solution to this problem is the use of microfluidic mixing devices, which rely on diffusion-based mixing. This is not ideal for multiprotein complexes, as the single-molecule fluorescence signal is dominated by the already dissociated species. Here, we designed a microfluidic device with mixing structures for fast and homogeneous mixing of components with varying diffusion coefficients and for fluorescence measurements at a defined single-molecule concentration. This enables direct measurement of dissociation rates at a broad range of timescales from a few milliseconds to several minutes. This further allows us to measure structural properties and stoichiometries of protein complexes with large equilibrium dissociation constants (K D’s) of 5 μM and above. We used the platform to measure structural properties and dissociation rates of heat shock protein 90 (Hsp90) dimers and found at least two dissociation rates which depend on the nucleotide state. Finally, we demonstrate the capability for measuring also equilibrium dissociation constants, resulting in the determination of both the kinetics and thermodynamics of the system under investigation.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b07437</identifier><identifier>PMID: 30351113</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Diffusion ; Fluorescence ; HSP90 Heat-Shock Proteins - chemistry ; Hydrodynamics ; Kinetics ; Microfluidic Analytical Techniques ; Models, Molecular ; Particle Size</subject><ispartof>The journal of physical chemistry. B, 2018-12, Vol.122 (49), p.11554-11560</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-8a2716a6b4941f55d93585478ce85e632f44364c0071bb460ed30c36f85edcd3</citedby><cites>FETCH-LOGICAL-a433t-8a2716a6b4941f55d93585478ce85e632f44364c0071bb460ed30c36f85edcd3</cites><orcidid>0000-0003-3292-4569 ; 0000-0001-7623-1452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30351113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hellenkamp, Björn</creatorcontrib><creatorcontrib>Thurn, Johann</creatorcontrib><creatorcontrib>Stadlmeier, Martina</creatorcontrib><creatorcontrib>Hugel, Thorsten</creatorcontrib><title>Kinetics of Transient Protein Complexes Determined via Diffusion-Independent Microfluidic Mixing and Fluorescence Stoichiometry</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Low-affinity protein complexes and their transient states are difficult to measure in single-molecule experiments because of their low population at low concentrations. A prominent solution to this problem is the use of microfluidic mixing devices, which rely on diffusion-based mixing. This is not ideal for multiprotein complexes, as the single-molecule fluorescence signal is dominated by the already dissociated species. Here, we designed a microfluidic device with mixing structures for fast and homogeneous mixing of components with varying diffusion coefficients and for fluorescence measurements at a defined single-molecule concentration. This enables direct measurement of dissociation rates at a broad range of timescales from a few milliseconds to several minutes. This further allows us to measure structural properties and stoichiometries of protein complexes with large equilibrium dissociation constants (K D’s) of 5 μM and above. We used the platform to measure structural properties and dissociation rates of heat shock protein 90 (Hsp90) dimers and found at least two dissociation rates which depend on the nucleotide state. Finally, we demonstrate the capability for measuring also equilibrium dissociation constants, resulting in the determination of both the kinetics and thermodynamics of the system under investigation.</description><subject>Diffusion</subject><subject>Fluorescence</subject><subject>HSP90 Heat-Shock Proteins - chemistry</subject><subject>Hydrodynamics</subject><subject>Kinetics</subject><subject>Microfluidic Analytical Techniques</subject><subject>Models, Molecular</subject><subject>Particle Size</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UU1v1DAUtBAVLYU7J-QjB7LY8UeyFyS0pVBRBBJ7txznuXWV2MFOqvbUv95Xdqng0IM_38z4eYaQN5ytOKv5B-vK6mpy3artWCNF84wccVWzCkfzfL_XnOlD8rKUK8ZqVbf6BTkUTCjOuTgid99ChDm4QpOn22xjCRBn-jOnGUKkmzROA9xAoScwQx4R3NPrYOlJ8H4pIcXqLPYwAU5I-x5cTn5YQh8cHm5CvKA29vR0WFKG4iA6oL_mFNxlSCPM-fYVOfB2KPB6vx6T7enn7eZrdf7jy9nm03llpRBz1dq64drqTq4l90r1a6FaJZvWQatAi9pLKbR0jDW866Rm0AvmhPZY7V0vjsnHney0dCPeYLPZDmbKYbT51iQbzP-VGC7NRbo2WtWa8zUKvNsL5PR7gTKbMeB_hsFGSEsxNUdv11pxhVC2g6IXpWTwj89wZh5iMxibeYjN7GNDytt_23sk_M0JAe93gD_UtOSIZj2tdw_3Madq</recordid><startdate>20181213</startdate><enddate>20181213</enddate><creator>Hellenkamp, Björn</creator><creator>Thurn, Johann</creator><creator>Stadlmeier, Martina</creator><creator>Hugel, Thorsten</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3292-4569</orcidid><orcidid>https://orcid.org/0000-0001-7623-1452</orcidid></search><sort><creationdate>20181213</creationdate><title>Kinetics of Transient Protein Complexes Determined via Diffusion-Independent Microfluidic Mixing and Fluorescence Stoichiometry</title><author>Hellenkamp, Björn ; Thurn, Johann ; Stadlmeier, Martina ; Hugel, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-8a2716a6b4941f55d93585478ce85e632f44364c0071bb460ed30c36f85edcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Diffusion</topic><topic>Fluorescence</topic><topic>HSP90 Heat-Shock Proteins - chemistry</topic><topic>Hydrodynamics</topic><topic>Kinetics</topic><topic>Microfluidic Analytical Techniques</topic><topic>Models, Molecular</topic><topic>Particle Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hellenkamp, Björn</creatorcontrib><creatorcontrib>Thurn, Johann</creatorcontrib><creatorcontrib>Stadlmeier, Martina</creatorcontrib><creatorcontrib>Hugel, Thorsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hellenkamp, Björn</au><au>Thurn, Johann</au><au>Stadlmeier, Martina</au><au>Hugel, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of Transient Protein Complexes Determined via Diffusion-Independent Microfluidic Mixing and Fluorescence Stoichiometry</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2018-12-13</date><risdate>2018</risdate><volume>122</volume><issue>49</issue><spage>11554</spage><epage>11560</epage><pages>11554-11560</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Low-affinity protein complexes and their transient states are difficult to measure in single-molecule experiments because of their low population at low concentrations. A prominent solution to this problem is the use of microfluidic mixing devices, which rely on diffusion-based mixing. This is not ideal for multiprotein complexes, as the single-molecule fluorescence signal is dominated by the already dissociated species. Here, we designed a microfluidic device with mixing structures for fast and homogeneous mixing of components with varying diffusion coefficients and for fluorescence measurements at a defined single-molecule concentration. This enables direct measurement of dissociation rates at a broad range of timescales from a few milliseconds to several minutes. This further allows us to measure structural properties and stoichiometries of protein complexes with large equilibrium dissociation constants (K D’s) of 5 μM and above. We used the platform to measure structural properties and dissociation rates of heat shock protein 90 (Hsp90) dimers and found at least two dissociation rates which depend on the nucleotide state. Finally, we demonstrate the capability for measuring also equilibrium dissociation constants, resulting in the determination of both the kinetics and thermodynamics of the system under investigation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30351113</pmid><doi>10.1021/acs.jpcb.8b07437</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3292-4569</orcidid><orcidid>https://orcid.org/0000-0001-7623-1452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2018-12, Vol.122 (49), p.11554-11560
issn 1520-6106
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6526119
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Diffusion
Fluorescence
HSP90 Heat-Shock Proteins - chemistry
Hydrodynamics
Kinetics
Microfluidic Analytical Techniques
Models, Molecular
Particle Size
title Kinetics of Transient Protein Complexes Determined via Diffusion-Independent Microfluidic Mixing and Fluorescence Stoichiometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20Transient%20Protein%20Complexes%20Determined%20via%20Diffusion-Independent%20Microfluidic%20Mixing%20and%20Fluorescence%20Stoichiometry&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Hellenkamp,%20Bjo%CC%88rn&rft.date=2018-12-13&rft.volume=122&rft.issue=49&rft.spage=11554&rft.epage=11560&rft.pages=11554-11560&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b07437&rft_dat=%3Cproquest_pubme%3E2125296515%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a433t-8a2716a6b4941f55d93585478ce85e632f44364c0071bb460ed30c36f85edcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2125296515&rft_id=info:pmid/30351113&rfr_iscdi=true