Loading…
The emergence of magnetic flux and its role on the onset of solar dynamic events
A plethora of solar dynamic events, such as the formation of active regions, the emission of jets and the occurrence of eruptions is often associated with the emergence of magnetic flux from the interior of the Sun to the surface and above. Here, we present a short review on the onset, driving and/o...
Saved in:
Published in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2019-07, Vol.377 (2148), p.20180387 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A plethora of solar dynamic events, such as the formation of active regions, the emission of jets and the occurrence of eruptions is often associated with the emergence of magnetic flux from the interior of the Sun to the surface and above. Here, we present a short review on the onset, driving and/or triggering of such events by magnetic flux emergence. We briefly describe some key observational examples, theoretical aspects and numerical simulations, towards revealing the mechanisms that govern solar dynamics and activity related to flux emergence. We show that the combination of important physical processes like shearing and reconnection of magnetic fieldlines in emerging flux regions or at their vicinity can power some of the most dynamic phenomena in the Sun on various temporal and spatial scales. Based on previous and recent observational and numerical studies, we highlight that, in most cases, none of these processes alone can drive and also trigger explosive phenomena releasing considerable amount of energy towards the outer solar atmosphere and space, such as flares, jets and large-scale eruptions (e.g. coronal mass ejections). In addition, one has to take into account the physical properties of the emerging field (e.g. strength, amount of flux, relative orientation to neighbouring and pre-existing magnetic fields, etc.) in order to better understand the exact role of magnetic flux emergence on the onset of solar dynamic events. This article is part of the theme issue 'Solar eruptions and their space weather impact'. |
---|---|
ISSN: | 1364-503X 1471-2962 |
DOI: | 10.1098/rsta.2018.0387 |