Loading…

Preservation of circadian rhythms by the protein folding chaperone, BiP

ABSTRACT Dysregulation of collagen synthesis is associated with disease progression in cancer and fibrosis. Collagen synthesis is coordinated with the circadian clock, which in cancer cells is, curiously, deregulated by endoplasmic reticulum (ER) stress. We hypothesized interplay between circadian r...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal 2019-06, Vol.33 (6), p.7479-7489
Main Authors: Pickard, Adam, Chang, Joan, Alachkar, Nissrin, Calverley, Ben, Garva, Richa, Arvan, Peter, Meng, Qing-Jun, Kadler, Karl E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Dysregulation of collagen synthesis is associated with disease progression in cancer and fibrosis. Collagen synthesis is coordinated with the circadian clock, which in cancer cells is, curiously, deregulated by endoplasmic reticulum (ER) stress. We hypothesized interplay between circadian rhythm, collagen synthesis, and ER stress in normal cells. Here we show that fibroblasts with ER stress lack circadian rhythms in gene expression upon clock‐synchronizing time cues. Overexpression of binding immunoglobulin protein (BiP) or treatment with chemical chaperones strengthens the oscillation amplitude of circadian rhythms. The significance of these findings was explored in tendon, where we showed that BiP expression is ramped preemptively prior to a surge in collagen synthesis at night, thereby preventing protein misfolding and ER stress. In turn, this forestalls activation of the unfolded protein response in order for circadian rhythms to be maintained. Thus, targeting ER stress could be used to modulate circadian rhythm and restore collagen homeostasis in disease.—Pickard, A., Chang, J., Alachkar, N., Calverley, B., Garva, R., Arvan, P., Meng, Q.‐J., Kadler, K. E. Preservation of circadian rhythms by the protein folding chaperone, BiP. FASEB J. 33, 000–000 (2019). www.fasebj.org
ISSN:0892-6638
1530-6860
1530-6860
DOI:10.1096/fj.201802366RR