Loading…
Novel Brain-Penetrating Oxime Acetylcholinesterase Reactivators Attenuate Organophosphate-Induced Neuropathology in the Rat Hippocampus
Abstract Organophosphate (OP) anticholinesterases cause excess acetylcholine leading to seizures which, if prolonged, result in neuronal damage in the rodent brain. Novel substituted phenoxyalkyl pyridinium oximes have previously shown evidence of penetrating the rat blood-brain barrier (BBB) in in...
Saved in:
Published in: | Toxicological sciences 2019-06, Vol.169 (2), p.465-474 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Organophosphate (OP) anticholinesterases cause excess acetylcholine leading to seizures which, if prolonged, result in neuronal damage in the rodent brain. Novel substituted phenoxyalkyl pyridinium oximes have previously shown evidence of penetrating the rat blood-brain barrier (BBB) in in vivo tests with a sarin surrogate (nitrophenyl isopropyl methylphosphonate, NIMP) or the active metabolite of the insecticide parathion, paraoxon (PXN), by reducing the time to cessation of seizure-like behaviors and accumulation of glial fibrillary acidic protein, whereas 2-PAM did not. The neuroprotective ability of our lead oximes (15, 20, and 55) was tested using NeuN, Nissl, and Fluoro-Jade B staining in the rat hippocampus. Following lethal-level subcutaneous challenge with NIMP or PXN, rats were intramuscularly administered a novel oxime or 2-PAM plus atropine and euthanized at 4 days. There were statistically significant increases in the median damage scores of the NeuN-stained NIMP, NIMP/2-PAM, and NIMP/Oxime 15 groups compared with the control whereas the scores of the NIMP/Oxime 20 and NIMP/Oxime 55 were not significantly different from the control. The same pattern of statistical significance was observed with PXN. Nissl staining provided a similar pattern, but without statistical differences. Fluoro-Jade B indicated neuroprotection from PXN with novel oximes but not with 2-PAM. The longer blood residence times of Oximes 20 and 55 compared with Oxime 15 might have contributed to their greater efficacy. These results suggest that novel oximes 20 and 55 were able to penetrate the BBB and attenuate neuronal damage after NIMP and PXN exposure, indicating potential broad-spectrum usefulness. |
---|---|
ISSN: | 1096-6080 1096-0929 |
DOI: | 10.1093/toxsci/kfz060 |