Loading…
New type of doping effect via metallization of surface reduction in SnO2
The use of conventional doping methods requires consideration of not only the energy connection with the base material but also the limits of the type and doping range of the dopant. The scope of the physico-chemical change must be determined from the properties of the base material, and when this l...
Saved in:
Published in: | Scientific reports 2019-05, Vol.9 (1), p.8129-8129, Article 8129 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of conventional doping methods requires consideration of not only the energy connection with the base material but also the limits of the type and doping range of the dopant. The scope of the physico-chemical change must be determined from the properties of the base material, and when this limit is exceeded, a large energy barrier must be formed between the base material and the dopant as in a heterojunction. Thus, starting from a different viewpoint, we introduce a so-called
metallization of surface reduction
method, which easily overcomes the disadvantages of existing methods while having the effect of doping the base material. Such new synthetic techniques enable sequential energy arrangements–gradients from the surface to the centre of the material–so that free energy transfer effects can be obtained as per the energies in the semiconducting band, eliminating the energy discontinuity of the heterojunction. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-44634-0 |