Loading…

Optimal translational fidelity is critical for Salmonella virulence and host interactions

Translational fidelity is required for accurate flow of genetic information, but is frequently altered by genetic changes and environmental stresses. To date, little is known about how translational fidelity affects the virulence and host interactions of bacterial pathogens. Here we show that surpri...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2019-06, Vol.47 (10), p.5356-5367
Main Authors: Fan, Yongqiang, Thompson, Laurel, Lyu, Zhihui, Cameron, Todd A, De Lay, Nicholas R, Krachler, Anne Marie, Ling, Jiqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Translational fidelity is required for accurate flow of genetic information, but is frequently altered by genetic changes and environmental stresses. To date, little is known about how translational fidelity affects the virulence and host interactions of bacterial pathogens. Here we show that surprisingly, either decreasing or increasing translational fidelity impairs the interactions of the enteric pathogen Salmonella Typhimurium with host cells and its fitness in zebrafish. Host interactions are mediated by Salmonella pathogenicity island 1 (SPI-1). Our RNA sequencing and quantitative RT-PCR results demonstrate that SPI-1 genes are among the most down-regulated when translational fidelity is either increased or decreased. Further, this down-regulation of SPI-1 genes depends on the master regulator HilD, and altering translational fidelity destabilizes HilD protein via enhanced degradation by Lon protease. Our work thus reveals that optimal translational fidelity is pivotal for adaptation of Salmonella to the host environment, and provides important mechanistic insights into this process.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkz229