Loading…

Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion

Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-06, Vol.9 (1), p.8284-8284, Article 8284
Main Authors: Nishijima, Yoshiaki, Balčytis, Armandas, Naganuma, Shin, Seniutinas, Gediminas, Juodkazis, Saulius
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3
cites cdi_FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3
container_end_page 8284
container_issue 1
container_start_page 8284
container_title Scientific reports
container_volume 9
creator Nishijima, Yoshiaki
Balčytis, Armandas
Naganuma, Shin
Seniutinas, Gediminas
Juodkazis, Saulius
description Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of applications, one example being future sensor networks employed in the internet-of-things. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the PPAs are demonstrated to follow Kirchhoff’s law where the patterns exhibiting a strong optical absorption were found to be effective thermal emitters. Hence, the Kirchhoff’s law is experimentally validated for the metasurfaces in the IR spectral domain where there is a lack of solutions for spectrally narrow-band emitters. The highest efficiency of radiation-to-heat and heat-to-radiation conversion was obtained for Au-Si-Au composite structures.
doi_str_mv 10.1038/s41598-019-44781-4
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6547666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263336985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3</originalsourceid><addsrcrecordid>eNp9kc1O3DAUha2qqIyGeYEuqkhsugn438kGqUL8iZHYtGvLca4nQUk8tRMQO16D1-NJMAwdoAvuxlc63z2-Vweh7wQfEMyKw8iJKIsckzLnXBUk51_QjGIucsoo_fqu30WLGK9xKkFLTspvaJcRIrlUYoaWl22wTeOde7x_iFkPo4lTcMZCzEZ_a0IdM3CutS0MY7Zu_OjzsYHQmy6DAcLqLrN-uIEQWz_soR1nugiL13eO_pye_D4-z5dXZxfHv5a5FRyPubNYKaBKKWZsWThWiZo4QmvDa4EN4xgXTlSUOS4ryyqZVCGgJFRVteKWzdHRxnc9VT3UNq0WTKfXoe1NuNPetPqjMrSNXvkbLQVXUspk8PPVIPi_E8RR92200HVmAD9FTalkjMmyEAnd_w-99lMY0nmJYgJzLhRNFN1QNvgYA7jtMgTr57z0Ji-d8tIveWmehn68P2M78i-dBLANEJM0rCC8_f2J7RNkmqL-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235044572</pqid></control><display><type>article</type><title>Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Nishijima, Yoshiaki ; Balčytis, Armandas ; Naganuma, Shin ; Seniutinas, Gediminas ; Juodkazis, Saulius</creator><creatorcontrib>Nishijima, Yoshiaki ; Balčytis, Armandas ; Naganuma, Shin ; Seniutinas, Gediminas ; Juodkazis, Saulius</creatorcontrib><description>Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of applications, one example being future sensor networks employed in the internet-of-things. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the PPAs are demonstrated to follow Kirchhoff’s law where the patterns exhibiting a strong optical absorption were found to be effective thermal emitters. Hence, the Kirchhoff’s law is experimentally validated for the metasurfaces in the IR spectral domain where there is a lack of solutions for spectrally narrow-band emitters. The highest efficiency of radiation-to-heat and heat-to-radiation conversion was obtained for Au-Si-Au composite structures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44781-4</identifier><identifier>PMID: 31164675</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/354 ; 639/925/927/1021 ; Design ; Energy conversion ; Heat ; Humanities and Social Sciences ; Internet of Things ; multidisciplinary ; Optical properties ; Radiation ; Science ; Science (multidisciplinary) ; Sensors ; Silicon wafers ; Spectrum analysis ; Thermal energy ; Wavelengths</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.8284-8284, Article 8284</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3</citedby><cites>FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3</cites><orcidid>0000-0003-3542-3874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2235044572/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2235044572?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31164675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishijima, Yoshiaki</creatorcontrib><creatorcontrib>Balčytis, Armandas</creatorcontrib><creatorcontrib>Naganuma, Shin</creatorcontrib><creatorcontrib>Seniutinas, Gediminas</creatorcontrib><creatorcontrib>Juodkazis, Saulius</creatorcontrib><title>Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of applications, one example being future sensor networks employed in the internet-of-things. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the PPAs are demonstrated to follow Kirchhoff’s law where the patterns exhibiting a strong optical absorption were found to be effective thermal emitters. Hence, the Kirchhoff’s law is experimentally validated for the metasurfaces in the IR spectral domain where there is a lack of solutions for spectrally narrow-band emitters. The highest efficiency of radiation-to-heat and heat-to-radiation conversion was obtained for Au-Si-Au composite structures.</description><subject>639/301/357/354</subject><subject>639/925/927/1021</subject><subject>Design</subject><subject>Energy conversion</subject><subject>Heat</subject><subject>Humanities and Social Sciences</subject><subject>Internet of Things</subject><subject>multidisciplinary</subject><subject>Optical properties</subject><subject>Radiation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Silicon wafers</subject><subject>Spectrum analysis</subject><subject>Thermal energy</subject><subject>Wavelengths</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kc1O3DAUha2qqIyGeYEuqkhsugn438kGqUL8iZHYtGvLca4nQUk8tRMQO16D1-NJMAwdoAvuxlc63z2-Vweh7wQfEMyKw8iJKIsckzLnXBUk51_QjGIucsoo_fqu30WLGK9xKkFLTspvaJcRIrlUYoaWl22wTeOde7x_iFkPo4lTcMZCzEZ_a0IdM3CutS0MY7Zu_OjzsYHQmy6DAcLqLrN-uIEQWz_soR1nugiL13eO_pye_D4-z5dXZxfHv5a5FRyPubNYKaBKKWZsWThWiZo4QmvDa4EN4xgXTlSUOS4ryyqZVCGgJFRVteKWzdHRxnc9VT3UNq0WTKfXoe1NuNPetPqjMrSNXvkbLQVXUspk8PPVIPi_E8RR92200HVmAD9FTalkjMmyEAnd_w-99lMY0nmJYgJzLhRNFN1QNvgYA7jtMgTr57z0Ji-d8tIveWmehn68P2M78i-dBLANEJM0rCC8_f2J7RNkmqL-</recordid><startdate>20190604</startdate><enddate>20190604</enddate><creator>Nishijima, Yoshiaki</creator><creator>Balčytis, Armandas</creator><creator>Naganuma, Shin</creator><creator>Seniutinas, Gediminas</creator><creator>Juodkazis, Saulius</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3542-3874</orcidid></search><sort><creationdate>20190604</creationdate><title>Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion</title><author>Nishijima, Yoshiaki ; Balčytis, Armandas ; Naganuma, Shin ; Seniutinas, Gediminas ; Juodkazis, Saulius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/357/354</topic><topic>639/925/927/1021</topic><topic>Design</topic><topic>Energy conversion</topic><topic>Heat</topic><topic>Humanities and Social Sciences</topic><topic>Internet of Things</topic><topic>multidisciplinary</topic><topic>Optical properties</topic><topic>Radiation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Silicon wafers</topic><topic>Spectrum analysis</topic><topic>Thermal energy</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishijima, Yoshiaki</creatorcontrib><creatorcontrib>Balčytis, Armandas</creatorcontrib><creatorcontrib>Naganuma, Shin</creatorcontrib><creatorcontrib>Seniutinas, Gediminas</creatorcontrib><creatorcontrib>Juodkazis, Saulius</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishijima, Yoshiaki</au><au>Balčytis, Armandas</au><au>Naganuma, Shin</au><au>Seniutinas, Gediminas</au><au>Juodkazis, Saulius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-04</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8284</spage><epage>8284</epage><pages>8284-8284</pages><artnum>8284</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of applications, one example being future sensor networks employed in the internet-of-things. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the PPAs are demonstrated to follow Kirchhoff’s law where the patterns exhibiting a strong optical absorption were found to be effective thermal emitters. Hence, the Kirchhoff’s law is experimentally validated for the metasurfaces in the IR spectral domain where there is a lack of solutions for spectrally narrow-band emitters. The highest efficiency of radiation-to-heat and heat-to-radiation conversion was obtained for Au-Si-Au composite structures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31164675</pmid><doi>10.1038/s41598-019-44781-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3542-3874</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-06, Vol.9 (1), p.8284-8284, Article 8284
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6547666
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/357/354
639/925/927/1021
Design
Energy conversion
Heat
Humanities and Social Sciences
Internet of Things
multidisciplinary
Optical properties
Radiation
Science
Science (multidisciplinary)
Sensors
Silicon wafers
Spectrum analysis
Thermal energy
Wavelengths
title Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kirchhoff%E2%80%99s%20metasurfaces%20towards%20efficient%20photo-thermal%20energy%20conversion&rft.jtitle=Scientific%20reports&rft.au=Nishijima,%20Yoshiaki&rft.date=2019-06-04&rft.volume=9&rft.issue=1&rft.spage=8284&rft.epage=8284&rft.pages=8284-8284&rft.artnum=8284&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44781-4&rft_dat=%3Cproquest_pubme%3E2263336985%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2235044572&rft_id=info:pmid/31164675&rfr_iscdi=true