Loading…
Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion
Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of...
Saved in:
Published in: | Scientific reports 2019-06, Vol.9 (1), p.8284-8284, Article 8284 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3 |
container_end_page | 8284 |
container_issue | 1 |
container_start_page | 8284 |
container_title | Scientific reports |
container_volume | 9 |
creator | Nishijima, Yoshiaki Balčytis, Armandas Naganuma, Shin Seniutinas, Gediminas Juodkazis, Saulius |
description | Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of applications, one example being future sensor networks employed in the internet-of-things. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the PPAs are demonstrated to follow Kirchhoff’s law where the patterns exhibiting a strong optical absorption were found to be effective thermal emitters. Hence, the Kirchhoff’s law is experimentally validated for the metasurfaces in the IR spectral domain where there is a lack of solutions for spectrally narrow-band emitters. The highest efficiency of radiation-to-heat and heat-to-radiation conversion was obtained for Au-Si-Au composite structures. |
doi_str_mv | 10.1038/s41598-019-44781-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6547666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263336985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3</originalsourceid><addsrcrecordid>eNp9kc1O3DAUha2qqIyGeYEuqkhsugn438kGqUL8iZHYtGvLca4nQUk8tRMQO16D1-NJMAwdoAvuxlc63z2-Vweh7wQfEMyKw8iJKIsckzLnXBUk51_QjGIucsoo_fqu30WLGK9xKkFLTspvaJcRIrlUYoaWl22wTeOde7x_iFkPo4lTcMZCzEZ_a0IdM3CutS0MY7Zu_OjzsYHQmy6DAcLqLrN-uIEQWz_soR1nugiL13eO_pye_D4-z5dXZxfHv5a5FRyPubNYKaBKKWZsWThWiZo4QmvDa4EN4xgXTlSUOS4ryyqZVCGgJFRVteKWzdHRxnc9VT3UNq0WTKfXoe1NuNPetPqjMrSNXvkbLQVXUspk8PPVIPi_E8RR92200HVmAD9FTalkjMmyEAnd_w-99lMY0nmJYgJzLhRNFN1QNvgYA7jtMgTr57z0Ji-d8tIveWmehn68P2M78i-dBLANEJM0rCC8_f2J7RNkmqL-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235044572</pqid></control><display><type>article</type><title>Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Nishijima, Yoshiaki ; Balčytis, Armandas ; Naganuma, Shin ; Seniutinas, Gediminas ; Juodkazis, Saulius</creator><creatorcontrib>Nishijima, Yoshiaki ; Balčytis, Armandas ; Naganuma, Shin ; Seniutinas, Gediminas ; Juodkazis, Saulius</creatorcontrib><description>Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of applications, one example being future sensor networks employed in the internet-of-things. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the PPAs are demonstrated to follow Kirchhoff’s law where the patterns exhibiting a strong optical absorption were found to be effective thermal emitters. Hence, the Kirchhoff’s law is experimentally validated for the metasurfaces in the IR spectral domain where there is a lack of solutions for spectrally narrow-band emitters. The highest efficiency of radiation-to-heat and heat-to-radiation conversion was obtained for Au-Si-Au composite structures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44781-4</identifier><identifier>PMID: 31164675</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/354 ; 639/925/927/1021 ; Design ; Energy conversion ; Heat ; Humanities and Social Sciences ; Internet of Things ; multidisciplinary ; Optical properties ; Radiation ; Science ; Science (multidisciplinary) ; Sensors ; Silicon wafers ; Spectrum analysis ; Thermal energy ; Wavelengths</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.8284-8284, Article 8284</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3</citedby><cites>FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3</cites><orcidid>0000-0003-3542-3874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2235044572/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2235044572?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31164675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishijima, Yoshiaki</creatorcontrib><creatorcontrib>Balčytis, Armandas</creatorcontrib><creatorcontrib>Naganuma, Shin</creatorcontrib><creatorcontrib>Seniutinas, Gediminas</creatorcontrib><creatorcontrib>Juodkazis, Saulius</creatorcontrib><title>Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of applications, one example being future sensor networks employed in the internet-of-things. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the PPAs are demonstrated to follow Kirchhoff’s law where the patterns exhibiting a strong optical absorption were found to be effective thermal emitters. Hence, the Kirchhoff’s law is experimentally validated for the metasurfaces in the IR spectral domain where there is a lack of solutions for spectrally narrow-band emitters. The highest efficiency of radiation-to-heat and heat-to-radiation conversion was obtained for Au-Si-Au composite structures.</description><subject>639/301/357/354</subject><subject>639/925/927/1021</subject><subject>Design</subject><subject>Energy conversion</subject><subject>Heat</subject><subject>Humanities and Social Sciences</subject><subject>Internet of Things</subject><subject>multidisciplinary</subject><subject>Optical properties</subject><subject>Radiation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Silicon wafers</subject><subject>Spectrum analysis</subject><subject>Thermal energy</subject><subject>Wavelengths</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kc1O3DAUha2qqIyGeYEuqkhsugn438kGqUL8iZHYtGvLca4nQUk8tRMQO16D1-NJMAwdoAvuxlc63z2-Vweh7wQfEMyKw8iJKIsckzLnXBUk51_QjGIucsoo_fqu30WLGK9xKkFLTspvaJcRIrlUYoaWl22wTeOde7x_iFkPo4lTcMZCzEZ_a0IdM3CutS0MY7Zu_OjzsYHQmy6DAcLqLrN-uIEQWz_soR1nugiL13eO_pye_D4-z5dXZxfHv5a5FRyPubNYKaBKKWZsWThWiZo4QmvDa4EN4xgXTlSUOS4ryyqZVCGgJFRVteKWzdHRxnc9VT3UNq0WTKfXoe1NuNPetPqjMrSNXvkbLQVXUspk8PPVIPi_E8RR92200HVmAD9FTalkjMmyEAnd_w-99lMY0nmJYgJzLhRNFN1QNvgYA7jtMgTr57z0Ji-d8tIveWmehn68P2M78i-dBLANEJM0rCC8_f2J7RNkmqL-</recordid><startdate>20190604</startdate><enddate>20190604</enddate><creator>Nishijima, Yoshiaki</creator><creator>Balčytis, Armandas</creator><creator>Naganuma, Shin</creator><creator>Seniutinas, Gediminas</creator><creator>Juodkazis, Saulius</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3542-3874</orcidid></search><sort><creationdate>20190604</creationdate><title>Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion</title><author>Nishijima, Yoshiaki ; Balčytis, Armandas ; Naganuma, Shin ; Seniutinas, Gediminas ; Juodkazis, Saulius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/357/354</topic><topic>639/925/927/1021</topic><topic>Design</topic><topic>Energy conversion</topic><topic>Heat</topic><topic>Humanities and Social Sciences</topic><topic>Internet of Things</topic><topic>multidisciplinary</topic><topic>Optical properties</topic><topic>Radiation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Silicon wafers</topic><topic>Spectrum analysis</topic><topic>Thermal energy</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishijima, Yoshiaki</creatorcontrib><creatorcontrib>Balčytis, Armandas</creatorcontrib><creatorcontrib>Naganuma, Shin</creatorcontrib><creatorcontrib>Seniutinas, Gediminas</creatorcontrib><creatorcontrib>Juodkazis, Saulius</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishijima, Yoshiaki</au><au>Balčytis, Armandas</au><au>Naganuma, Shin</au><au>Seniutinas, Gediminas</au><au>Juodkazis, Saulius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-04</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8284</spage><epage>8284</epage><pages>8284-8284</pages><artnum>8284</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterized at mid-infrared wavelengths. Both, radiation emitter and detector systems operating in various spectral domains are highly sought after for a diverse range of applications, one example being future sensor networks employed in the internet-of-things. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the PPAs are demonstrated to follow Kirchhoff’s law where the patterns exhibiting a strong optical absorption were found to be effective thermal emitters. Hence, the Kirchhoff’s law is experimentally validated for the metasurfaces in the IR spectral domain where there is a lack of solutions for spectrally narrow-band emitters. The highest efficiency of radiation-to-heat and heat-to-radiation conversion was obtained for Au-Si-Au composite structures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31164675</pmid><doi>10.1038/s41598-019-44781-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3542-3874</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-06, Vol.9 (1), p.8284-8284, Article 8284 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6547666 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/357/354 639/925/927/1021 Design Energy conversion Heat Humanities and Social Sciences Internet of Things multidisciplinary Optical properties Radiation Science Science (multidisciplinary) Sensors Silicon wafers Spectrum analysis Thermal energy Wavelengths |
title | Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kirchhoff%E2%80%99s%20metasurfaces%20towards%20efficient%20photo-thermal%20energy%20conversion&rft.jtitle=Scientific%20reports&rft.au=Nishijima,%20Yoshiaki&rft.date=2019-06-04&rft.volume=9&rft.issue=1&rft.spage=8284&rft.epage=8284&rft.pages=8284-8284&rft.artnum=8284&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44781-4&rft_dat=%3Cproquest_pubme%3E2263336985%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-fc077e27773ac98f3b5d1f12da4d50a34008f5b23f46bc3b6d1f55e9127bd74c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2235044572&rft_id=info:pmid/31164675&rfr_iscdi=true |