Loading…
Different Synchrony in Rhythmic Movement Caused by Morphological Difference between Five- and Six-armed Brittle Stars
Physiological experiments and mathematical models have supported that neuronal activity is crucial for coordinating rhythmic movements in animals. On the other hand, robotics studies have suggested the importance of physical properties made by body structure, i.e. morphology. However, it remains unc...
Saved in:
Published in: | Scientific reports 2019-06, Vol.9 (1), p.8298-8298, Article 8298 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Physiological experiments and mathematical models have supported that neuronal activity is crucial for coordinating rhythmic movements in animals. On the other hand, robotics studies have suggested the importance of physical properties made by body structure, i.e. morphology. However, it remains unclear how morphology affects movement coordination in animals, independent of neuronal activity. To begin to understand this issue, our study reports a rhythmic movement in the green brittle star
Ophiarachna incrassata
. We found this animal moved five radially symmetric parts in a well-ordered unsynchronized pattern. We built a phenomenological model where internal fluid flows between the five body parts to explain the coordinated pattern without considering neuronal activity. Changing the number of the body parts from five to six, we simulated a synchronized pattern, which was demonstrated also by an individual with six symmetric parts. Our model suggests a different number in morphology makes a different fluid flow, leading to a different synchronization pattern in the animal. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-44808-w |