Loading…
Can Machine Learning Algorithms Predict Which Patients Will Achieve Minimally Clinically Important Differences From Total Joint Arthroplasty?
Identifying patients at risk of not achieving meaningful gains in long-term postsurgical patient-reported outcome measures (PROMs) is important for improving patient monitoring and facilitating presurgical decision support. Machine learning may help automatically select and weigh many predictors to...
Saved in:
Published in: | Clinical orthopaedics and related research 2019-06, Vol.477 (6), p.1267-1279 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Identifying patients at risk of not achieving meaningful gains in long-term postsurgical patient-reported outcome measures (PROMs) is important for improving patient monitoring and facilitating presurgical decision support. Machine learning may help automatically select and weigh many predictors to create models that maximize predictive power. However, these techniques are underused among studies of total joint arthroplasty (TJA) patients, particularly those exploring changes in postsurgical PROMs. QUESTION/PURPOSES: (1) To evaluate whether machine learning algorithms, applied to hospital registry data, could predict patients who would not achieve a minimally clinically important difference (MCID) in four PROMs 2 years after TJA; (2) to explore how predictive ability changes as more information is included in modeling; and (3) to identify which variables drive the predictive power of these models.
Data from a single, high-volume institution's TJA registry were used for this study. We identified 7239 hip and 6480 knee TJAs between 2007 and 2012, which, for at least one PROM, patients had completed both baseline and 2-year followup surveys (among 19,187 TJAs in our registry and 43,313 total TJAs). In all, 12,203 registry TJAs had valid SF-36 physical component scores (PCS) and mental component scores (MCS) at baseline and 2 years; 7085 and 6205 had valid Hip and Knee Disability and Osteoarthritis Outcome Scores for joint replacement (HOOS JR and KOOS JR scores), respectively. Supervised machine learning refers to a class of algorithms that links a mapping of inputs to an output based on many input-output examples. We trained three of the most popular such algorithms (logistic least absolute shrinkage and selection operator (LASSO), random forest, and linear support vector machine) to predict 2-year postsurgical MCIDs. We incrementally considered predictors available at four time points: (1) before the decision to have surgery, (2) before surgery, (3) before discharge, and (4) immediately after discharge. We evaluated the performance of each model using area under the receiver operating characteristic (AUROC) statistics on a validation sample composed of a random 20% subsample of TJAs excluded from modeling. We also considered abbreviated models that only used baseline PROMs and procedure as predictors (to isolate their predictive power). We further directly evaluated which variables were ranked by each model as most predictive of 2-year MCIDs.
The three mach |
---|---|
ISSN: | 0009-921X 1528-1132 0009-921X |
DOI: | 10.1097/corr.0000000000000687 |