Loading…

Microfluidic System for In-Flow Reversible Photoswitching of Near-Infrared Fluorescent Proteins

We have developed a microfluidic flow cytometry system to screen reversibly photoswitchable fluorescent proteins for contrast and stability of reversible photoconversion between high- and low-fluorescent states. A two-color array of 20 excitation and deactivation beams generated with diffractive opt...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2016-12, Vol.88 (23), p.11821-11829
Main Authors: Lychagov, Vladislav V, Shemetov, Anton A, Jimenez, Ralph, Verkhusha, Vladislav V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a510t-5b112e1ec80846f0ff7595f4466c9178f31fcc12a9f6f991bd897a4dd80687103
cites cdi_FETCH-LOGICAL-a510t-5b112e1ec80846f0ff7595f4466c9178f31fcc12a9f6f991bd897a4dd80687103
container_end_page 11829
container_issue 23
container_start_page 11821
container_title Analytical chemistry (Washington)
container_volume 88
creator Lychagov, Vladislav V
Shemetov, Anton A
Jimenez, Ralph
Verkhusha, Vladislav V
description We have developed a microfluidic flow cytometry system to screen reversibly photoswitchable fluorescent proteins for contrast and stability of reversible photoconversion between high- and low-fluorescent states. A two-color array of 20 excitation and deactivation beams generated with diffractive optics was combined with a serpentine microfluidic channel geometry designed to provide five cycles of photoswitching with real-time calculation of photoconversion fluorescence contrast. The characteristics of photoswitching in-flow as a function of excitation and deactivation beam fluence, flow speed, and protein concentration were studied with droplets of the bacterial phytochrome from Deinococcus radiodurans (DrBphP), which is weakly fluorescent in the near-infrared (NIR) spectral range. In agreement with measurements on stationary droplets and HeLa S3 mammalian cells expressing DrBphP, optimized operation of the flow system provided up to 50% photoconversion contrast in-flow at a droplet rate of few hertz and a coefficient of variation (CV) of up to 2% over 10 000 events. The methods for calibrating the brightness and photoswitching measurements in microfluidic flow established here provide a basis for screening of cell-based libraries of reversibly switchable NIR fluorescent proteins.
doi_str_mv 10.1021/acs.analchem.6b03499
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6554737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4278594201</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510t-5b112e1ec80846f0ff7595f4466c9178f31fcc12a9f6f991bd897a4dd80687103</originalsourceid><addsrcrecordid>eNqNkUtv1DAURi0EotPCP0DIEhs2Ga5jx48NEqoYOlKBisfachy74yqJi5206r_H0UzLY4FYeXHP9_leHYReEFgTqMkbY_PajKa3OzeseQuUKfUIrUhTQ8WlrB-jFQDQqhYAR-g45ysAQoDwp-ioFhKEEnSF9MdgU_T9HLpg8de7PLkB-5jwdqw2fbzFX9yNSzm0vcMXuzjFfBsmuwvjJY4ef3ImVdvRJ5Nchzf9HJPL1o0TvkhxcmHMz9ATb_rsnh_eE_R98_7b6Vl1_vnD9vTdeWUaAlPVtITUjjgrQTLuwXvRqMYzxrlVREhPibeW1EZ57pUibSeVMKzrJHApCNAT9Hbfez23g-uWHZLp9XUKg0l3Opqg_5yMYacv443mTcMEFaXg9aEgxR-zy5MeQjml783o4pw1kUIpKaTk_4FSLihtmCzoq7_QqzinYm2hmFRFEF0K2Z4qKnJOzj_sTUAvsnWRre9l64PsEnv5-80PoXu7BYA9sMR_ffyvzp9feLn9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848900336</pqid></control><display><type>article</type><title>Microfluidic System for In-Flow Reversible Photoswitching of Near-Infrared Fluorescent Proteins</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lychagov, Vladislav V ; Shemetov, Anton A ; Jimenez, Ralph ; Verkhusha, Vladislav V</creator><creatorcontrib>Lychagov, Vladislav V ; Shemetov, Anton A ; Jimenez, Ralph ; Verkhusha, Vladislav V</creatorcontrib><description>We have developed a microfluidic flow cytometry system to screen reversibly photoswitchable fluorescent proteins for contrast and stability of reversible photoconversion between high- and low-fluorescent states. A two-color array of 20 excitation and deactivation beams generated with diffractive optics was combined with a serpentine microfluidic channel geometry designed to provide five cycles of photoswitching with real-time calculation of photoconversion fluorescence contrast. The characteristics of photoswitching in-flow as a function of excitation and deactivation beam fluence, flow speed, and protein concentration were studied with droplets of the bacterial phytochrome from Deinococcus radiodurans (DrBphP), which is weakly fluorescent in the near-infrared (NIR) spectral range. In agreement with measurements on stationary droplets and HeLa S3 mammalian cells expressing DrBphP, optimized operation of the flow system provided up to 50% photoconversion contrast in-flow at a droplet rate of few hertz and a coefficient of variation (CV) of up to 2% over 10 000 events. The methods for calibrating the brightness and photoswitching measurements in microfluidic flow established here provide a basis for screening of cell-based libraries of reversibly switchable NIR fluorescent proteins.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b03499</identifier><identifier>PMID: 27807973</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacteria ; Bacterial Proteins - analysis ; Beams (radiation) ; Cells ; Deactivation ; Deinococcus - chemistry ; Droplets ; Excitation ; Fluids ; Fluorescence ; HeLa Cells ; Humans ; Infrared radiation ; Infrared Rays ; Luminescent Proteins - analysis ; Microfluidic Analytical Techniques ; Microfluidics ; Photochemical Processes ; Proteins</subject><ispartof>Analytical chemistry (Washington), 2016-12, Vol.88 (23), p.11821-11829</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 6, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a510t-5b112e1ec80846f0ff7595f4466c9178f31fcc12a9f6f991bd897a4dd80687103</citedby><cites>FETCH-LOGICAL-a510t-5b112e1ec80846f0ff7595f4466c9178f31fcc12a9f6f991bd897a4dd80687103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27807973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lychagov, Vladislav V</creatorcontrib><creatorcontrib>Shemetov, Anton A</creatorcontrib><creatorcontrib>Jimenez, Ralph</creatorcontrib><creatorcontrib>Verkhusha, Vladislav V</creatorcontrib><title>Microfluidic System for In-Flow Reversible Photoswitching of Near-Infrared Fluorescent Proteins</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We have developed a microfluidic flow cytometry system to screen reversibly photoswitchable fluorescent proteins for contrast and stability of reversible photoconversion between high- and low-fluorescent states. A two-color array of 20 excitation and deactivation beams generated with diffractive optics was combined with a serpentine microfluidic channel geometry designed to provide five cycles of photoswitching with real-time calculation of photoconversion fluorescence contrast. The characteristics of photoswitching in-flow as a function of excitation and deactivation beam fluence, flow speed, and protein concentration were studied with droplets of the bacterial phytochrome from Deinococcus radiodurans (DrBphP), which is weakly fluorescent in the near-infrared (NIR) spectral range. In agreement with measurements on stationary droplets and HeLa S3 mammalian cells expressing DrBphP, optimized operation of the flow system provided up to 50% photoconversion contrast in-flow at a droplet rate of few hertz and a coefficient of variation (CV) of up to 2% over 10 000 events. The methods for calibrating the brightness and photoswitching measurements in microfluidic flow established here provide a basis for screening of cell-based libraries of reversibly switchable NIR fluorescent proteins.</description><subject>Bacteria</subject><subject>Bacterial Proteins - analysis</subject><subject>Beams (radiation)</subject><subject>Cells</subject><subject>Deactivation</subject><subject>Deinococcus - chemistry</subject><subject>Droplets</subject><subject>Excitation</subject><subject>Fluids</subject><subject>Fluorescence</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Infrared radiation</subject><subject>Infrared Rays</subject><subject>Luminescent Proteins - analysis</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Photochemical Processes</subject><subject>Proteins</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAURi0EotPCP0DIEhs2Ga5jx48NEqoYOlKBisfachy74yqJi5206r_H0UzLY4FYeXHP9_leHYReEFgTqMkbY_PajKa3OzeseQuUKfUIrUhTQ8WlrB-jFQDQqhYAR-g45ysAQoDwp-ioFhKEEnSF9MdgU_T9HLpg8de7PLkB-5jwdqw2fbzFX9yNSzm0vcMXuzjFfBsmuwvjJY4ef3ImVdvRJ5Nchzf9HJPL1o0TvkhxcmHMz9ATb_rsnh_eE_R98_7b6Vl1_vnD9vTdeWUaAlPVtITUjjgrQTLuwXvRqMYzxrlVREhPibeW1EZ57pUibSeVMKzrJHApCNAT9Hbfez23g-uWHZLp9XUKg0l3Opqg_5yMYacv443mTcMEFaXg9aEgxR-zy5MeQjml783o4pw1kUIpKaTk_4FSLihtmCzoq7_QqzinYm2hmFRFEF0K2Z4qKnJOzj_sTUAvsnWRre9l64PsEnv5-80PoXu7BYA9sMR_ffyvzp9feLn9</recordid><startdate>20161206</startdate><enddate>20161206</enddate><creator>Lychagov, Vladislav V</creator><creator>Shemetov, Anton A</creator><creator>Jimenez, Ralph</creator><creator>Verkhusha, Vladislav V</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161206</creationdate><title>Microfluidic System for In-Flow Reversible Photoswitching of Near-Infrared Fluorescent Proteins</title><author>Lychagov, Vladislav V ; Shemetov, Anton A ; Jimenez, Ralph ; Verkhusha, Vladislav V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510t-5b112e1ec80846f0ff7595f4466c9178f31fcc12a9f6f991bd897a4dd80687103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - analysis</topic><topic>Beams (radiation)</topic><topic>Cells</topic><topic>Deactivation</topic><topic>Deinococcus - chemistry</topic><topic>Droplets</topic><topic>Excitation</topic><topic>Fluids</topic><topic>Fluorescence</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Infrared radiation</topic><topic>Infrared Rays</topic><topic>Luminescent Proteins - analysis</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Photochemical Processes</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lychagov, Vladislav V</creatorcontrib><creatorcontrib>Shemetov, Anton A</creatorcontrib><creatorcontrib>Jimenez, Ralph</creatorcontrib><creatorcontrib>Verkhusha, Vladislav V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lychagov, Vladislav V</au><au>Shemetov, Anton A</au><au>Jimenez, Ralph</au><au>Verkhusha, Vladislav V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic System for In-Flow Reversible Photoswitching of Near-Infrared Fluorescent Proteins</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-12-06</date><risdate>2016</risdate><volume>88</volume><issue>23</issue><spage>11821</spage><epage>11829</epage><pages>11821-11829</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We have developed a microfluidic flow cytometry system to screen reversibly photoswitchable fluorescent proteins for contrast and stability of reversible photoconversion between high- and low-fluorescent states. A two-color array of 20 excitation and deactivation beams generated with diffractive optics was combined with a serpentine microfluidic channel geometry designed to provide five cycles of photoswitching with real-time calculation of photoconversion fluorescence contrast. The characteristics of photoswitching in-flow as a function of excitation and deactivation beam fluence, flow speed, and protein concentration were studied with droplets of the bacterial phytochrome from Deinococcus radiodurans (DrBphP), which is weakly fluorescent in the near-infrared (NIR) spectral range. In agreement with measurements on stationary droplets and HeLa S3 mammalian cells expressing DrBphP, optimized operation of the flow system provided up to 50% photoconversion contrast in-flow at a droplet rate of few hertz and a coefficient of variation (CV) of up to 2% over 10 000 events. The methods for calibrating the brightness and photoswitching measurements in microfluidic flow established here provide a basis for screening of cell-based libraries of reversibly switchable NIR fluorescent proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27807973</pmid><doi>10.1021/acs.analchem.6b03499</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2016-12, Vol.88 (23), p.11821-11829
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6554737
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Bacteria
Bacterial Proteins - analysis
Beams (radiation)
Cells
Deactivation
Deinococcus - chemistry
Droplets
Excitation
Fluids
Fluorescence
HeLa Cells
Humans
Infrared radiation
Infrared Rays
Luminescent Proteins - analysis
Microfluidic Analytical Techniques
Microfluidics
Photochemical Processes
Proteins
title Microfluidic System for In-Flow Reversible Photoswitching of Near-Infrared Fluorescent Proteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20System%20for%20In-Flow%20Reversible%20Photoswitching%20of%20Near-Infrared%20Fluorescent%20Proteins&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lychagov,%20Vladislav%20V&rft.date=2016-12-06&rft.volume=88&rft.issue=23&rft.spage=11821&rft.epage=11829&rft.pages=11821-11829&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b03499&rft_dat=%3Cproquest_pubme%3E4278594201%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510t-5b112e1ec80846f0ff7595f4466c9178f31fcc12a9f6f991bd897a4dd80687103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1848900336&rft_id=info:pmid/27807973&rfr_iscdi=true