Loading…
Machine learning reveals systematic accumulation of electric current in lead-up to solar flares
Solar flares—bursts of high-energy radiation responsible for severe space weather effects—are a consequence of the occasional destabilization of magnetic fields rooted in active regions (ARs). The complexity of AR evolution is a barrier to a comprehensive understanding of flaring processes and accur...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (23), p.11141-11146 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-82e3e2ff23037f624211b7c06b5e02cb80f9734bc5c917b4b8444e0a7a898c8d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-82e3e2ff23037f624211b7c06b5e02cb80f9734bc5c917b4b8444e0a7a898c8d3 |
container_end_page | 11146 |
container_issue | 23 |
container_start_page | 11141 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Dhuri, Dattaraj B. Hanasoge, Shravan M. Cheung, Mark C. M. |
description | Solar flares—bursts of high-energy radiation responsible for severe space weather effects—are a consequence of the occasional destabilization of magnetic fields rooted in active regions (ARs). The complexity of AR evolution is a barrier to a comprehensive understanding of flaring processes and accurate prediction. Although machine learning (ML) has been used to improve flare predictions, the potential for revealing precursors and associated physics has been underexploited. Here, we train ML algorithms to classify between vector–magnetic-field observations from flaring ARs, producing at least one M-/X-class flare, and nonflaring ARs. Analysis of magnetic-field observations accurately classified by the machine presents statistical evidence for (i) ARs persisting in flare-productive states—characterized by AR area—for days, before and after M- and X-class flare events; (ii) systematic preflare buildup of free energy in the form of electric currents, suggesting that the associated subsurface magnetic field is twisted; and (iii) intensification of Maxwell stresses in the corona above newly emerging ARs, days before first flares. These results provide insights into flare physics and improving flare forecasting. |
doi_str_mv | 10.1073/pnas.1820244116 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26706421</jstor_id><sourcerecordid>26706421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-82e3e2ff23037f624211b7c06b5e02cb80f9734bc5c917b4b8444e0a7a898c8d3</originalsourceid><addsrcrecordid>eNpdkb1v2zAQxYkiQe24nTulINAli5Ljh0RqCRAE-SiQoks7ExR9smVIpEtKAfLfl45TJ-lC8vB-93DHR8gXBucMlLjYepvOmebApWSs-kDmDGpWVLKGIzIH4KrQkssZOUlpAwB1qeEjmQnGWK70nJgf1q07j7RHG33nVzTiI9o-0fSURhzs2DlqnZuGqc_v4GloKfboxpgFN8WIfqSd3_Uvi2lLx0BT6G2kbT4wfSLHbXbDzy_3gvy-vfl1fV88_Lz7fn31UDgpxVhojgJ523IBQrUVl5yxRjmomhKBu0ZDWyshG1e6mqlGNlpKiWCV1bV2eikW5HLvu52aAZcuTxVtb7axG2x8MsF25r3iu7VZhUdTlRXjCrLB2YtBDH8mTKMZuuSw763HMCXDueCgoHxGv_2HbsIUfV4vUxKY0KrmmbrYUy6GlCK2h2EYmF14ZheeeQ0vd3x9u8OB_5dWBk73wCaNIR50Ximo8o-Jv87GoDc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2240138792</pqid></control><display><type>article</type><title>Machine learning reveals systematic accumulation of electric current in lead-up to solar flares</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Dhuri, Dattaraj B. ; Hanasoge, Shravan M. ; Cheung, Mark C. M.</creator><creatorcontrib>Dhuri, Dattaraj B. ; Hanasoge, Shravan M. ; Cheung, Mark C. M.</creatorcontrib><description>Solar flares—bursts of high-energy radiation responsible for severe space weather effects—are a consequence of the occasional destabilization of magnetic fields rooted in active regions (ARs). The complexity of AR evolution is a barrier to a comprehensive understanding of flaring processes and accurate prediction. Although machine learning (ML) has been used to improve flare predictions, the potential for revealing precursors and associated physics has been underexploited. Here, we train ML algorithms to classify between vector–magnetic-field observations from flaring ARs, producing at least one M-/X-class flare, and nonflaring ARs. Analysis of magnetic-field observations accurately classified by the machine presents statistical evidence for (i) ARs persisting in flare-productive states—characterized by AR area—for days, before and after M- and X-class flare events; (ii) systematic preflare buildup of free energy in the form of electric currents, suggesting that the associated subsurface magnetic field is twisted; and (iii) intensification of Maxwell stresses in the corona above newly emerging ARs, days before first flares. These results provide insights into flare physics and improving flare forecasting.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1820244116</identifier><identifier>PMID: 31110008</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Artificial intelligence ; Destabilization ; Electric currents ; Free energy ; Learning algorithms ; Machine learning ; Magnetic fields ; Physical Sciences ; Physics ; Solar energy ; Solar flares ; Weather</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (23), p.11141-11146</ispartof><rights>Copyright National Academy of Sciences Jun 4, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-82e3e2ff23037f624211b7c06b5e02cb80f9734bc5c917b4b8444e0a7a898c8d3</citedby><cites>FETCH-LOGICAL-c443t-82e3e2ff23037f624211b7c06b5e02cb80f9734bc5c917b4b8444e0a7a898c8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26706421$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26706421$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31110008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhuri, Dattaraj B.</creatorcontrib><creatorcontrib>Hanasoge, Shravan M.</creatorcontrib><creatorcontrib>Cheung, Mark C. M.</creatorcontrib><title>Machine learning reveals systematic accumulation of electric current in lead-up to solar flares</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Solar flares—bursts of high-energy radiation responsible for severe space weather effects—are a consequence of the occasional destabilization of magnetic fields rooted in active regions (ARs). The complexity of AR evolution is a barrier to a comprehensive understanding of flaring processes and accurate prediction. Although machine learning (ML) has been used to improve flare predictions, the potential for revealing precursors and associated physics has been underexploited. Here, we train ML algorithms to classify between vector–magnetic-field observations from flaring ARs, producing at least one M-/X-class flare, and nonflaring ARs. Analysis of magnetic-field observations accurately classified by the machine presents statistical evidence for (i) ARs persisting in flare-productive states—characterized by AR area—for days, before and after M- and X-class flare events; (ii) systematic preflare buildup of free energy in the form of electric currents, suggesting that the associated subsurface magnetic field is twisted; and (iii) intensification of Maxwell stresses in the corona above newly emerging ARs, days before first flares. These results provide insights into flare physics and improving flare forecasting.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Destabilization</subject><subject>Electric currents</subject><subject>Free energy</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic fields</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Solar energy</subject><subject>Solar flares</subject><subject>Weather</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkb1v2zAQxYkiQe24nTulINAli5Ljh0RqCRAE-SiQoks7ExR9smVIpEtKAfLfl45TJ-lC8vB-93DHR8gXBucMlLjYepvOmebApWSs-kDmDGpWVLKGIzIH4KrQkssZOUlpAwB1qeEjmQnGWK70nJgf1q07j7RHG33nVzTiI9o-0fSURhzs2DlqnZuGqc_v4GloKfboxpgFN8WIfqSd3_Uvi2lLx0BT6G2kbT4wfSLHbXbDzy_3gvy-vfl1fV88_Lz7fn31UDgpxVhojgJ523IBQrUVl5yxRjmomhKBu0ZDWyshG1e6mqlGNlpKiWCV1bV2eikW5HLvu52aAZcuTxVtb7axG2x8MsF25r3iu7VZhUdTlRXjCrLB2YtBDH8mTKMZuuSw763HMCXDueCgoHxGv_2HbsIUfV4vUxKY0KrmmbrYUy6GlCK2h2EYmF14ZheeeQ0vd3x9u8OB_5dWBk73wCaNIR50Ximo8o-Jv87GoDc</recordid><startdate>20190604</startdate><enddate>20190604</enddate><creator>Dhuri, Dattaraj B.</creator><creator>Hanasoge, Shravan M.</creator><creator>Cheung, Mark C. M.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190604</creationdate><title>Machine learning reveals systematic accumulation of electric current in lead-up to solar flares</title><author>Dhuri, Dattaraj B. ; Hanasoge, Shravan M. ; Cheung, Mark C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-82e3e2ff23037f624211b7c06b5e02cb80f9734bc5c917b4b8444e0a7a898c8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Destabilization</topic><topic>Electric currents</topic><topic>Free energy</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic fields</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Solar energy</topic><topic>Solar flares</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhuri, Dattaraj B.</creatorcontrib><creatorcontrib>Hanasoge, Shravan M.</creatorcontrib><creatorcontrib>Cheung, Mark C. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhuri, Dattaraj B.</au><au>Hanasoge, Shravan M.</au><au>Cheung, Mark C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning reveals systematic accumulation of electric current in lead-up to solar flares</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-06-04</date><risdate>2019</risdate><volume>116</volume><issue>23</issue><spage>11141</spage><epage>11146</epage><pages>11141-11146</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Solar flares—bursts of high-energy radiation responsible for severe space weather effects—are a consequence of the occasional destabilization of magnetic fields rooted in active regions (ARs). The complexity of AR evolution is a barrier to a comprehensive understanding of flaring processes and accurate prediction. Although machine learning (ML) has been used to improve flare predictions, the potential for revealing precursors and associated physics has been underexploited. Here, we train ML algorithms to classify between vector–magnetic-field observations from flaring ARs, producing at least one M-/X-class flare, and nonflaring ARs. Analysis of magnetic-field observations accurately classified by the machine presents statistical evidence for (i) ARs persisting in flare-productive states—characterized by AR area—for days, before and after M- and X-class flare events; (ii) systematic preflare buildup of free energy in the form of electric currents, suggesting that the associated subsurface magnetic field is twisted; and (iii) intensification of Maxwell stresses in the corona above newly emerging ARs, days before first flares. These results provide insights into flare physics and improving flare forecasting.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31110008</pmid><doi>10.1073/pnas.1820244116</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-06, Vol.116 (23), p.11141-11146 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561270 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Algorithms Artificial intelligence Destabilization Electric currents Free energy Learning algorithms Machine learning Magnetic fields Physical Sciences Physics Solar energy Solar flares Weather |
title | Machine learning reveals systematic accumulation of electric current in lead-up to solar flares |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20reveals%20systematic%20accumulation%20of%20electric%20current%20in%20lead-up%20to%20solar%20flares&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dhuri,%20Dattaraj%20B.&rft.date=2019-06-04&rft.volume=116&rft.issue=23&rft.spage=11141&rft.epage=11146&rft.pages=11141-11146&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1820244116&rft_dat=%3Cjstor_pubme%3E26706421%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-82e3e2ff23037f624211b7c06b5e02cb80f9734bc5c917b4b8444e0a7a898c8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2240138792&rft_id=info:pmid/31110008&rft_jstor_id=26706421&rfr_iscdi=true |