Loading…
Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans
Brown adipose tissue (BAT) dissipates metabolic energy and mediates non-shivering thermogenesis, thereby boosting energy expenditure. Increasing BAT mass and activity is expected to be a promising strategy for combating obesity; however, few medications effectively and safely recruit and activate BA...
Saved in:
Published in: | Cell death & disease 2019-06, Vol.10 (6), p.468-18, Article 468 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Brown adipose tissue (BAT) dissipates metabolic energy and mediates non-shivering thermogenesis, thereby boosting energy expenditure. Increasing BAT mass and activity is expected to be a promising strategy for combating obesity; however, few medications effectively and safely recruit and activate BAT in humans. Berberine (BBR), a natural compound, is commonly used as a nonprescription drug to treat diarrhea. Here, we reported that 1-month BBR intervention increased BAT mass and activity, reduced body weight, and improved insulin sensitivity in mildly overweight patients with non-alcoholic fatty liver disease. Chronic BBR treatment promoted BAT development by stimulating the expression of brown adipogenic genes, enhanced BAT thermogenesis, and global energy expenditure in diet-induced obese mice and chow-fed lean mice, Consistently, BBR facilitated brown adipocyte differentiation in both mouse and human primary brown preadipocytes. We further found that BBR increased the transcription of PRDM16, a master regulator of brown/beige adipogenesis, by inducing the active DNA demethylation of PRDM16 promoter, which might be driven by the activation of AMPK and production of its downstream tricarboxylic acid cycle intermediate α-Ketoglutarate. Moreover, chronic BBR administration had no impact on the BAT thermogenesis in adipose-specific AMPKa1 and AMPKa2 knockout mice. In summary, we found that BBR intervention promoted recruitment and activation of BAT and AMPK–PRDM16 axis was indispensable for the pro-BAT and pro-energy expenditure properties of BBR. Our findings suggest that BBR may be a promising drug for obesity and related metabolic disorders in humans partially through activating BAT. |
---|---|
ISSN: | 2041-4889 2041-4889 |
DOI: | 10.1038/s41419-019-1706-y |