Loading…
Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates
Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent...
Saved in:
Published in: | Protein science 2019-07, Vol.28 (7), p.1290-1306 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3 |
container_end_page | 1306 |
container_issue | 7 |
container_start_page | 1290 |
container_title | Protein science |
container_volume | 28 |
creator | Doonan, Lynley M. Guerriero, Christopher J. Preston, G. Michael Buck, Teresa M. Khazanov, Netaly Fisher, Edward A. Senderowitz, Hanoch Brodsky, Jeffrey L. |
description | Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments. |
doi_str_mv | 10.1002/pro.3636 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6566541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239568550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3</originalsourceid><addsrcrecordid>eNp1kdFKHTEQhoO01KMt-ARloTe9WZtssnOSG6FIqwXBUiz0LuQks2tkd7NNdi3eiU8g9A19kuaotVrwIgxhPr75hyFkh9FdRmn1YYxhlwOHDbJgAlQpFfx4QRZUASslB7lJtlI6o5QKVvFXZJMzWlMp5IJcHaaRUVE0xvrOT2bCVEynWODgwtiZ1Ht7c3kdcfJ27ub-5vK3SSlYn0FXOGyjcWbyYShCUzif0CTM_CPGDPm1bcT2lsvNHHbAIs2rNMX1vNfkZWO6hG_u6zb5_vnTyf5heXR88GX_41FpBZdQ1ha4cMCWYpk3rYxsGrBKKQqNM5xKityBsTXjFquVXFEmpWDAGuTKGYV8m-zdecd51aOzOOT5nR6j70280MF4_bQz-FPdhnMNNUAtWBa8vxfE8HPGNOneJ4tdZwYMc9JVVamKL4FCRt_9h56FOQ55vUxxVYOsa_pPaGNIKWLzEIZRvT5s_ge9PmxG3z4O_wD-vWQGyjvgl-_w4lmR_vrt-Fb4B__Us_Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239568550</pqid></control><display><type>article</type><title>Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates</title><source>Open Access: PubMed Central</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Doonan, Lynley M. ; Guerriero, Christopher J. ; Preston, G. Michael ; Buck, Teresa M. ; Khazanov, Netaly ; Fisher, Edward A. ; Senderowitz, Hanoch ; Brodsky, Jeffrey L.</creator><creatorcontrib>Doonan, Lynley M. ; Guerriero, Christopher J. ; Preston, G. Michael ; Buck, Teresa M. ; Khazanov, Netaly ; Fisher, Edward A. ; Senderowitz, Hanoch ; Brodsky, Jeffrey L.</creatorcontrib><description>Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3636</identifier><identifier>PMID: 31050848</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>AAA‐ATPase ; Agglomeration ; Apolipoprotein B ; Biodegradation ; Chimeras ; Conductance ; Cystic fibrosis ; cystic fibrosis transmembrane conductance regulator ; Degradation ; Disease ; Endoplasmic reticulum ; Endoplasmic Reticulum - chemistry ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum-Associated Degradation ; Full‐Length Paper ; Full‐Length Papers ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Hsp104 ; Hydrophobicity ; Lipids ; molecular chaperone ; Molecular Chaperones - chemistry ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Molecular dynamics ; Molecular Dynamics Simulation ; Mutation ; Nonsense mutation ; proteasome ; Protein Aggregates ; protein aggregation ; Protein folding ; Proteins ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Stop codon ; Substrates ; ubiquitin ; Yeast</subject><ispartof>Protein science, 2019-07, Vol.28 (7), p.1290-1306</ispartof><rights>2019 The Protein Society</rights><rights>2019 The Protein Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3</citedby><cites>FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3</cites><orcidid>0000-0002-6984-8486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566541/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566541/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31050848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Doonan, Lynley M.</creatorcontrib><creatorcontrib>Guerriero, Christopher J.</creatorcontrib><creatorcontrib>Preston, G. Michael</creatorcontrib><creatorcontrib>Buck, Teresa M.</creatorcontrib><creatorcontrib>Khazanov, Netaly</creatorcontrib><creatorcontrib>Fisher, Edward A.</creatorcontrib><creatorcontrib>Senderowitz, Hanoch</creatorcontrib><creatorcontrib>Brodsky, Jeffrey L.</creatorcontrib><title>Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments.</description><subject>AAA‐ATPase</subject><subject>Agglomeration</subject><subject>Apolipoprotein B</subject><subject>Biodegradation</subject><subject>Chimeras</subject><subject>Conductance</subject><subject>Cystic fibrosis</subject><subject>cystic fibrosis transmembrane conductance regulator</subject><subject>Degradation</subject><subject>Disease</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - chemistry</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum-Associated Degradation</subject><subject>Full‐Length Paper</subject><subject>Full‐Length Papers</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Hsp104</subject><subject>Hydrophobicity</subject><subject>Lipids</subject><subject>molecular chaperone</subject><subject>Molecular Chaperones - chemistry</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Nonsense mutation</subject><subject>proteasome</subject><subject>Protein Aggregates</subject><subject>protein aggregation</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stop codon</subject><subject>Substrates</subject><subject>ubiquitin</subject><subject>Yeast</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kdFKHTEQhoO01KMt-ARloTe9WZtssnOSG6FIqwXBUiz0LuQks2tkd7NNdi3eiU8g9A19kuaotVrwIgxhPr75hyFkh9FdRmn1YYxhlwOHDbJgAlQpFfx4QRZUASslB7lJtlI6o5QKVvFXZJMzWlMp5IJcHaaRUVE0xvrOT2bCVEynWODgwtiZ1Ht7c3kdcfJ27ub-5vK3SSlYn0FXOGyjcWbyYShCUzif0CTM_CPGDPm1bcT2lsvNHHbAIs2rNMX1vNfkZWO6hG_u6zb5_vnTyf5heXR88GX_41FpBZdQ1ha4cMCWYpk3rYxsGrBKKQqNM5xKityBsTXjFquVXFEmpWDAGuTKGYV8m-zdecd51aOzOOT5nR6j70280MF4_bQz-FPdhnMNNUAtWBa8vxfE8HPGNOneJ4tdZwYMc9JVVamKL4FCRt_9h56FOQ55vUxxVYOsa_pPaGNIKWLzEIZRvT5s_ge9PmxG3z4O_wD-vWQGyjvgl-_w4lmR_vrt-Fb4B__Us_Y</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Doonan, Lynley M.</creator><creator>Guerriero, Christopher J.</creator><creator>Preston, G. Michael</creator><creator>Buck, Teresa M.</creator><creator>Khazanov, Netaly</creator><creator>Fisher, Edward A.</creator><creator>Senderowitz, Hanoch</creator><creator>Brodsky, Jeffrey L.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6984-8486</orcidid></search><sort><creationdate>201907</creationdate><title>Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates</title><author>Doonan, Lynley M. ; Guerriero, Christopher J. ; Preston, G. Michael ; Buck, Teresa M. ; Khazanov, Netaly ; Fisher, Edward A. ; Senderowitz, Hanoch ; Brodsky, Jeffrey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AAA‐ATPase</topic><topic>Agglomeration</topic><topic>Apolipoprotein B</topic><topic>Biodegradation</topic><topic>Chimeras</topic><topic>Conductance</topic><topic>Cystic fibrosis</topic><topic>cystic fibrosis transmembrane conductance regulator</topic><topic>Degradation</topic><topic>Disease</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - chemistry</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum-Associated Degradation</topic><topic>Full‐Length Paper</topic><topic>Full‐Length Papers</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Hsp104</topic><topic>Hydrophobicity</topic><topic>Lipids</topic><topic>molecular chaperone</topic><topic>Molecular Chaperones - chemistry</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Nonsense mutation</topic><topic>proteasome</topic><topic>Protein Aggregates</topic><topic>protein aggregation</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stop codon</topic><topic>Substrates</topic><topic>ubiquitin</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doonan, Lynley M.</creatorcontrib><creatorcontrib>Guerriero, Christopher J.</creatorcontrib><creatorcontrib>Preston, G. Michael</creatorcontrib><creatorcontrib>Buck, Teresa M.</creatorcontrib><creatorcontrib>Khazanov, Netaly</creatorcontrib><creatorcontrib>Fisher, Edward A.</creatorcontrib><creatorcontrib>Senderowitz, Hanoch</creatorcontrib><creatorcontrib>Brodsky, Jeffrey L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doonan, Lynley M.</au><au>Guerriero, Christopher J.</au><au>Preston, G. Michael</au><au>Buck, Teresa M.</au><au>Khazanov, Netaly</au><au>Fisher, Edward A.</au><au>Senderowitz, Hanoch</au><au>Brodsky, Jeffrey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2019-07</date><risdate>2019</risdate><volume>28</volume><issue>7</issue><spage>1290</spage><epage>1306</epage><pages>1290-1306</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31050848</pmid><doi>10.1002/pro.3636</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6984-8486</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2019-07, Vol.28 (7), p.1290-1306 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6566541 |
source | Open Access: PubMed Central; Wiley-Blackwell Read & Publish Collection |
subjects | AAA‐ATPase Agglomeration Apolipoprotein B Biodegradation Chimeras Conductance Cystic fibrosis cystic fibrosis transmembrane conductance regulator Degradation Disease Endoplasmic reticulum Endoplasmic Reticulum - chemistry Endoplasmic Reticulum - metabolism Endoplasmic Reticulum-Associated Degradation Full‐Length Paper Full‐Length Papers Heat-Shock Proteins - chemistry Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism Hsp104 Hydrophobicity Lipids molecular chaperone Molecular Chaperones - chemistry Molecular Chaperones - genetics Molecular Chaperones - metabolism Molecular dynamics Molecular Dynamics Simulation Mutation Nonsense mutation proteasome Protein Aggregates protein aggregation Protein folding Proteins Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Stop codon Substrates ubiquitin Yeast |
title | Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hsp104%20facilitates%20the%20endoplasmic%E2%80%90reticulum%E2%80%93associated%20degradation%20of%20disease%E2%80%90associated%20and%20aggregation%E2%80%90prone%20substrates&rft.jtitle=Protein%20science&rft.au=Doonan,%20Lynley%20M.&rft.date=2019-07&rft.volume=28&rft.issue=7&rft.spage=1290&rft.epage=1306&rft.pages=1290-1306&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3636&rft_dat=%3Cproquest_pubme%3E2239568550%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2239568550&rft_id=info:pmid/31050848&rfr_iscdi=true |