Loading…

Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates

Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 2019-07, Vol.28 (7), p.1290-1306
Main Authors: Doonan, Lynley M., Guerriero, Christopher J., Preston, G. Michael, Buck, Teresa M., Khazanov, Netaly, Fisher, Edward A., Senderowitz, Hanoch, Brodsky, Jeffrey L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3
cites cdi_FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3
container_end_page 1306
container_issue 7
container_start_page 1290
container_title Protein science
container_volume 28
creator Doonan, Lynley M.
Guerriero, Christopher J.
Preston, G. Michael
Buck, Teresa M.
Khazanov, Netaly
Fisher, Edward A.
Senderowitz, Hanoch
Brodsky, Jeffrey L.
description Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments.
doi_str_mv 10.1002/pro.3636
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6566541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239568550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3</originalsourceid><addsrcrecordid>eNp1kdFKHTEQhoO01KMt-ARloTe9WZtssnOSG6FIqwXBUiz0LuQks2tkd7NNdi3eiU8g9A19kuaotVrwIgxhPr75hyFkh9FdRmn1YYxhlwOHDbJgAlQpFfx4QRZUASslB7lJtlI6o5QKVvFXZJMzWlMp5IJcHaaRUVE0xvrOT2bCVEynWODgwtiZ1Ht7c3kdcfJ27ub-5vK3SSlYn0FXOGyjcWbyYShCUzif0CTM_CPGDPm1bcT2lsvNHHbAIs2rNMX1vNfkZWO6hG_u6zb5_vnTyf5heXR88GX_41FpBZdQ1ha4cMCWYpk3rYxsGrBKKQqNM5xKityBsTXjFquVXFEmpWDAGuTKGYV8m-zdecd51aOzOOT5nR6j70280MF4_bQz-FPdhnMNNUAtWBa8vxfE8HPGNOneJ4tdZwYMc9JVVamKL4FCRt_9h56FOQ55vUxxVYOsa_pPaGNIKWLzEIZRvT5s_ge9PmxG3z4O_wD-vWQGyjvgl-_w4lmR_vrt-Fb4B__Us_Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239568550</pqid></control><display><type>article</type><title>Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates</title><source>Open Access: PubMed Central</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Doonan, Lynley M. ; Guerriero, Christopher J. ; Preston, G. Michael ; Buck, Teresa M. ; Khazanov, Netaly ; Fisher, Edward A. ; Senderowitz, Hanoch ; Brodsky, Jeffrey L.</creator><creatorcontrib>Doonan, Lynley M. ; Guerriero, Christopher J. ; Preston, G. Michael ; Buck, Teresa M. ; Khazanov, Netaly ; Fisher, Edward A. ; Senderowitz, Hanoch ; Brodsky, Jeffrey L.</creatorcontrib><description>Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3636</identifier><identifier>PMID: 31050848</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>AAA‐ATPase ; Agglomeration ; Apolipoprotein B ; Biodegradation ; Chimeras ; Conductance ; Cystic fibrosis ; cystic fibrosis transmembrane conductance regulator ; Degradation ; Disease ; Endoplasmic reticulum ; Endoplasmic Reticulum - chemistry ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum-Associated Degradation ; Full‐Length Paper ; Full‐Length Papers ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Hsp104 ; Hydrophobicity ; Lipids ; molecular chaperone ; Molecular Chaperones - chemistry ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Molecular dynamics ; Molecular Dynamics Simulation ; Mutation ; Nonsense mutation ; proteasome ; Protein Aggregates ; protein aggregation ; Protein folding ; Proteins ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Stop codon ; Substrates ; ubiquitin ; Yeast</subject><ispartof>Protein science, 2019-07, Vol.28 (7), p.1290-1306</ispartof><rights>2019 The Protein Society</rights><rights>2019 The Protein Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3</citedby><cites>FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3</cites><orcidid>0000-0002-6984-8486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566541/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566541/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31050848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Doonan, Lynley M.</creatorcontrib><creatorcontrib>Guerriero, Christopher J.</creatorcontrib><creatorcontrib>Preston, G. Michael</creatorcontrib><creatorcontrib>Buck, Teresa M.</creatorcontrib><creatorcontrib>Khazanov, Netaly</creatorcontrib><creatorcontrib>Fisher, Edward A.</creatorcontrib><creatorcontrib>Senderowitz, Hanoch</creatorcontrib><creatorcontrib>Brodsky, Jeffrey L.</creatorcontrib><title>Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments.</description><subject>AAA‐ATPase</subject><subject>Agglomeration</subject><subject>Apolipoprotein B</subject><subject>Biodegradation</subject><subject>Chimeras</subject><subject>Conductance</subject><subject>Cystic fibrosis</subject><subject>cystic fibrosis transmembrane conductance regulator</subject><subject>Degradation</subject><subject>Disease</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - chemistry</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum-Associated Degradation</subject><subject>Full‐Length Paper</subject><subject>Full‐Length Papers</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Hsp104</subject><subject>Hydrophobicity</subject><subject>Lipids</subject><subject>molecular chaperone</subject><subject>Molecular Chaperones - chemistry</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Nonsense mutation</subject><subject>proteasome</subject><subject>Protein Aggregates</subject><subject>protein aggregation</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stop codon</subject><subject>Substrates</subject><subject>ubiquitin</subject><subject>Yeast</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kdFKHTEQhoO01KMt-ARloTe9WZtssnOSG6FIqwXBUiz0LuQks2tkd7NNdi3eiU8g9A19kuaotVrwIgxhPr75hyFkh9FdRmn1YYxhlwOHDbJgAlQpFfx4QRZUASslB7lJtlI6o5QKVvFXZJMzWlMp5IJcHaaRUVE0xvrOT2bCVEynWODgwtiZ1Ht7c3kdcfJ27ub-5vK3SSlYn0FXOGyjcWbyYShCUzif0CTM_CPGDPm1bcT2lsvNHHbAIs2rNMX1vNfkZWO6hG_u6zb5_vnTyf5heXR88GX_41FpBZdQ1ha4cMCWYpk3rYxsGrBKKQqNM5xKityBsTXjFquVXFEmpWDAGuTKGYV8m-zdecd51aOzOOT5nR6j70280MF4_bQz-FPdhnMNNUAtWBa8vxfE8HPGNOneJ4tdZwYMc9JVVamKL4FCRt_9h56FOQ55vUxxVYOsa_pPaGNIKWLzEIZRvT5s_ge9PmxG3z4O_wD-vWQGyjvgl-_w4lmR_vrt-Fb4B__Us_Y</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Doonan, Lynley M.</creator><creator>Guerriero, Christopher J.</creator><creator>Preston, G. Michael</creator><creator>Buck, Teresa M.</creator><creator>Khazanov, Netaly</creator><creator>Fisher, Edward A.</creator><creator>Senderowitz, Hanoch</creator><creator>Brodsky, Jeffrey L.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6984-8486</orcidid></search><sort><creationdate>201907</creationdate><title>Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates</title><author>Doonan, Lynley M. ; Guerriero, Christopher J. ; Preston, G. Michael ; Buck, Teresa M. ; Khazanov, Netaly ; Fisher, Edward A. ; Senderowitz, Hanoch ; Brodsky, Jeffrey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AAA‐ATPase</topic><topic>Agglomeration</topic><topic>Apolipoprotein B</topic><topic>Biodegradation</topic><topic>Chimeras</topic><topic>Conductance</topic><topic>Cystic fibrosis</topic><topic>cystic fibrosis transmembrane conductance regulator</topic><topic>Degradation</topic><topic>Disease</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - chemistry</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum-Associated Degradation</topic><topic>Full‐Length Paper</topic><topic>Full‐Length Papers</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Hsp104</topic><topic>Hydrophobicity</topic><topic>Lipids</topic><topic>molecular chaperone</topic><topic>Molecular Chaperones - chemistry</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Nonsense mutation</topic><topic>proteasome</topic><topic>Protein Aggregates</topic><topic>protein aggregation</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stop codon</topic><topic>Substrates</topic><topic>ubiquitin</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doonan, Lynley M.</creatorcontrib><creatorcontrib>Guerriero, Christopher J.</creatorcontrib><creatorcontrib>Preston, G. Michael</creatorcontrib><creatorcontrib>Buck, Teresa M.</creatorcontrib><creatorcontrib>Khazanov, Netaly</creatorcontrib><creatorcontrib>Fisher, Edward A.</creatorcontrib><creatorcontrib>Senderowitz, Hanoch</creatorcontrib><creatorcontrib>Brodsky, Jeffrey L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doonan, Lynley M.</au><au>Guerriero, Christopher J.</au><au>Preston, G. Michael</au><au>Buck, Teresa M.</au><au>Khazanov, Netaly</au><au>Fisher, Edward A.</au><au>Senderowitz, Hanoch</au><au>Brodsky, Jeffrey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2019-07</date><risdate>2019</risdate><volume>28</volume><issue>7</issue><spage>1290</spage><epage>1306</epage><pages>1290-1306</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31050848</pmid><doi>10.1002/pro.3636</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6984-8486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2019-07, Vol.28 (7), p.1290-1306
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6566541
source Open Access: PubMed Central; Wiley-Blackwell Read & Publish Collection
subjects AAA‐ATPase
Agglomeration
Apolipoprotein B
Biodegradation
Chimeras
Conductance
Cystic fibrosis
cystic fibrosis transmembrane conductance regulator
Degradation
Disease
Endoplasmic reticulum
Endoplasmic Reticulum - chemistry
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum-Associated Degradation
Full‐Length Paper
Full‐Length Papers
Heat-Shock Proteins - chemistry
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Hsp104
Hydrophobicity
Lipids
molecular chaperone
Molecular Chaperones - chemistry
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
Molecular dynamics
Molecular Dynamics Simulation
Mutation
Nonsense mutation
proteasome
Protein Aggregates
protein aggregation
Protein folding
Proteins
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Stop codon
Substrates
ubiquitin
Yeast
title Hsp104 facilitates the endoplasmic‐reticulum–associated degradation of disease‐associated and aggregation‐prone substrates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hsp104%20facilitates%20the%20endoplasmic%E2%80%90reticulum%E2%80%93associated%20degradation%20of%20disease%E2%80%90associated%20and%20aggregation%E2%80%90prone%20substrates&rft.jtitle=Protein%20science&rft.au=Doonan,%20Lynley%20M.&rft.date=2019-07&rft.volume=28&rft.issue=7&rft.spage=1290&rft.epage=1306&rft.pages=1290-1306&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3636&rft_dat=%3Cproquest_pubme%3E2239568550%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4386-5c634d617476362a8ff6c99906fda3080e3d6ac513ce2b8b01884161fe39da9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2239568550&rft_id=info:pmid/31050848&rfr_iscdi=true