Loading…

Activity-Dependent Changes to the Brain and Behavior of the Honey Bee, Apis mellifera (L.)

To explore the origins and possible behavioral consequences of structural plasticity in an insect brain, we have taken advantage of the following: (1) the highly compartmentalized nature of the primary antenno-sensory centers (antennal lobes) of the brain, (2) the ease with which individual compartm...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 1997-09, Vol.17 (18), p.7148-7156
Main Authors: Sigg, Dominique, Thompson, Caryn M, Mercer, Alison R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To explore the origins and possible behavioral consequences of structural plasticity in an insect brain, we have taken advantage of the following: (1) the highly compartmentalized nature of the primary antenno-sensory centers (antennal lobes) of the brain, (2) the ease with which individual compartments, or glomeruli, within the antennal-lobe neuropil can be identified, and (3) the predictability of changes to readily identifiable glomeruli in the antennal lobes of the adult worker honey bee. Treatment with the juvenile hormone analog methoprene and hive manipulation techniques are used to induce precocious foraging behavior in young worker honey bees. The impact of these treatments on the ontogeny of olfactory learning performance and on the volumes of readily identifiable glomeruli in the antennal lobes of the bee brain are examined in parallel. The study reveals that (1) significant changes in glomerular volume are activity dependent and (2) associative learning of floral odors improves with experience. Improvements in associative learning performance coincide temporally with increases in glomerular volume. This raises an important question: are changes in glomerular volume that result from shifts in behavior simply a consequence of changes in the use of peripheral sensory pathways, or are they associated with events that underlie learning and the formation of long-term memories?
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.17-18-07148.1997