Loading…

Wocko, a neurological mutant generated in a transgenic mouse pedigree

Naturally occurring mutations involving the nervous system have provided virtually all of our current understanding of the genetic regulation of neural development (Caviness and Rakic, 1978). The difficulty of isolating the corresponding genes, however, has precluded a molecular analysis of these mu...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 1991-06, Vol.11 (6), p.1524-1530
Main Authors: Crenshaw, EB, 3d, Ryan, A, Dillon, SR, Kalla, K, Rosenfeld, MG
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Naturally occurring mutations involving the nervous system have provided virtually all of our current understanding of the genetic regulation of neural development (Caviness and Rakic, 1978). The difficulty of isolating the corresponding genes, however, has precluded a molecular analysis of these mutants. Insertional mutagenesis, induced by microinjection of DNA into fertilized ova to produce transgenic animals, provides a molecular tag that marks the site of the mutational event. In this article, we describe a transgenic neurological mutation, designated wocko (Wo), which disrupts the development of the inner ear. These mutant mice display a dominant behavioral phenotype that consists of circling, hyperactivity, and head tossing, reminiscent of the shaker/waltzer class of mutants, and they display a recessive homozygous sublethal phenotype. Anatomical analyses showed that both structural and neural components of the vestibular system were disrupted, while analyses of mutant fetuses showed that these morphological abnormalities were due to aberrant development. Although low levels of transgene expression were detected using a sensitive PCR assay, several nonmutant pedigrees that contain the same construct also expressed the transgene in the inner ear, suggesting that low levels of transgene expression alone were not responsible for the wocko phenotype. Because the integrated transgene provides a marker to clone the wocko mutation, the analysis of this mutant will give unique insight into the molecular genetics of inner ear development and into a broad class of neurological mutations that affect the inner ear.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.11-06-01524.1991